


Mastering Python for Finance

Understand, design, and implement state-of-the-art  
mathematical and statistical applications used in 
finance with Python

James Ma Weiming

BIRMINGHAM - MUMBAI



Mastering Python for Finance

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015

Production reference: 1240415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-451-6

www.packtpub.com

www.packtpub.com


Credits

Author
James Ma Weiming

Reviewers
Namit Kewat

Marco Marchioro

Jiri Pik

Steven E. Sommer, MD, MBA

Commissioning Editor
Usha Iyer

Acquisition Editor
Usha Iyer

Content Development Editor
Susmita Sabat

Technical Editor
Prajakta Mhatre

Copy Editor
Rashmi Sawant

Project Coordinator
Milton Dsouza

Proofreaders
Stephen Copestake

Safis Editing

Paul Hindle

Indexer
Hemangini Bari

Graphics
Sheetal Aute

Valentina D'silva

Disha Haria

Abhinash Sahu

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat



About the Author

James Ma Weiming works with high-frequency, low-latency trading systems, 
writing his own programs and tools, most of which are open sourced. He is currently 
supporting veteran traders in the, trading pits of the Chicago Board of Trade devising 
strategies to game the market. He graduated from the Stuart School of Business at 
Illinois Institute of Technology with a master of science degree in finance.

He started his career in Singapore after receiving his bachelor's degree in computer 
engineering from Nanyang Technological University and diploma in information 
technology from Nanyang Polytechnic. During his career, he has worked in  
treasury operations handling foreign exchange and fixed income products. He also 
developed mobile applications with a company operating a funds and investments 
distribution platform.

This book was made possible by the fabulous team at Packt 
Publishing, especially Usha Iyer and Susmita Sabat. I am also 
eminently grateful to all the reviewers for their comments and to  
my immediate family for their encouragement and good cheer.

I'd like to thank Milt Robinson, Brian Hickman, and Frank for their 
mentorship on the trading floor.



About the Reviewers

Namit Kewat is a financial analyst and XBRL expert. He uses Python for his 
requirements related to financial reporting, from extracting data to its validation,  
and from recording to reporting. In his spare time, he enjoys working on web 
projects, machine learning experiments on SEC/HMRC XBRL financial data,  
and spending time with his family.

Marco Marchioro is the CEO of Quant Island, a Singapore-based consultancy firm 
specialized in quantitative risk models for asset management and energy finance. He 
has 15 years of experience in quantitative financial risk management, where his areas 
of expertise range from quantitative risk modeling and agile software development, 
to risk training. As a founding partner of RiskMap, he was one of the three creators of 
QuantLib, a widely-used open source library for financial modeling. He has extensive 
experience in quantitative finance, where he is well-versed with the end-to-end process 
of developing financial software. Prior to moving to Singapore, he held various senior 
roles in StatPro, covering the risk-management software development cycle. As the 
head of the quantitative research team, he was responsible for creating original risk 
models that have been successively and quickly implemented in an agile software 
environment. From 2010 to 2014, he held the position of an adjunct professor at the 
University of Milano-Bicocca, where he taught complex derivatives to a highly-ranked 
graduate class.



Jiri Pik is a finance and business intelligence consultant, working with major 
investment banks, hedge funds, and other financial players. He has architected  
and delivered breakthrough trading, portfolio and risk management systems,  
and decision support systems across a number of industries.

Jiri's consulting firm, WIXESYS, provides its clients with certified expertise, 
judgment, and execution at the speed of light. WIXESYS' power tools include 
revolutionary Excel and Outlook add-ons, available at http://spearian.com.

Steven E. Sommer, MD, MBA is a physician who has practiced critical care 
medicine for over 24 years. He is the chief investment officer for a small hedge fund, 
where he has employed portfolio optimization models based on volatility, modern 
portfolio theory, and market regime to drive asset selection and market exposure 
decisions. He has extensively employed R and Python to leverage big data in the 
development of his investment models.

Dr. Sommer holds a BA degree from Lafayette College, where he graduated  
Magna Cum Laude with honors in chemistry, an MD degree from Drexel University 
School of Medicine, where he graduated with distinction in medicine, an MBA 
degree from the University of Virginia's Darden School of Business, and a certificate 
in computational finance with distinction from the Georgia Institute of Technology.

http://spearian.com


www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view 9 entirely free books. Simply use your login credentials for 
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com




[ i ]

Table of Contents
Preface	 ix
Chapter 1: Python for Financial Applications	 1

Is Python for me?	 2
Free and open source	 2
High-level, powerful, and flexible	 3
A wealth of standard libraries	 3

Objected-oriented versus functional programming	 3
The object-oriented approach	 4
The functional approach	 4
Which approach should I use?	 5

Which Python version should I use?	 5
Introducing IPython	 6

Getting IPython	 6
Using pip	 6
The IPython Notebook	 7

Notebook documents	 8
Running the IPython Notebook	 8
Creating a new notebook	 8

Notebook cells	 9
Code cell	 10
Markdown cell	 10
Raw NBConvert cell	 10
Heading cells	 10

Simple exercises with IPython Notebook	 11
Creating a notebook with heading and Markdown cells	 11
Saving notebooks	 12
Mathematical operations in cells	 13
Displaying graphs	 13
Inserting equations	 14
Displaying images	 15
Inserting YouTube videos	 16



Table of Contents

[ ii ]

Working with HTML	 17
The pandas DataFrame object as an HTML table	 17

Notebook for finance	 18
Summary	 19

Chapter 2: The Importance of Linearity in Finance	 21
The capital asset pricing model and the security market line	 22
The Arbitrage Pricing Theory model	 27
Multivariate linear regression of factor models	 27
Linear optimization	 29

Getting PuLP	 29
A simple linear optimization problem	 30
Outcomes of linear programs	 32
Integer programming	 32

An example of an integer programming model with binary conditions	 33
A different approach with binary conditions	 35

Solving linear equations using matrices	 37
The LU decomposition	 38
The Cholesky decomposition	 40
The QR decomposition	 42

Solving with other matrix algebra methods	 43
The Jacobi method	 44
The Gauss-Seidel method	 46

Summary	 48
Chapter 3: Nonlinearity in Finance	 49

Nonlinearity modeling	 50
Examples of nonlinear models	 50

The implied volatility model	 50
The Markov regime-switching model	 52
The threshold autoregressive model	 53
Smooth transition models	 54

An introduction to root-finding	 55
Incremental search	 56
The bisection method	 58
Newton's method	 61
The secant method	 63
Combining root-finding methods	 66
SciPy implementations	 66

Root-finding scalar functions	 67
General nonlinear solvers	 68

Summary	 70



Table of Contents

[ iii ]

Chapter 4: Numerical Procedures	 71
Introduction to options	 72
Binomial trees in options pricing	 72

Pricing European options	 73
Are these formulas relevant to stocks? What about futures?	 75

Writing the StockOption class	 76
Writing the BinomialEuropeanOption class	 77
Pricing American options with the BinomialTreeOption class	 79
The Cox-Ross-Rubinstein model	 82

Writing the BinomialCRROption class	 82
Using a Leisen-Reimer tree	 83

Writing the BinomialLROption class	 85
The Greeks for free	 86

Writing the BinomialLRWithGreeks class	 88
Trinomial trees in options pricing	 90

Writing the TrinomialTreeOption class	 91
Lattices in options pricing	 93

Using a binomial lattice	 94
Writing the BinomialCRROption class	 94
Using the trinomial lattice	 96

Writing the TrinomialLattice class	 97
Finite differences in options pricing	 98

The explicit method	 100
Writing the FiniteDifferences class	 101
Writing the FDExplicitEu class	 103

The implicit method	 105
Writing the FDImplicitEu class	 106

The Crank-Nicolson method	 108
Writing the FDCnEu class	 110

Pricing exotic barrier options	 111
A down-and-out option	 111
Writing the FDCnDo class 	 112

American options pricing with finite differences	 113
Writing the FDCnAm class	 114

Putting it all together – implied volatility modeling	 117
Implied volatilities of AAPL American put option	 117

Summary	 121
Chapter 5: Interest Rates and Derivatives	 123

Fixed-income securities	 124
Yield curves	 124
Valuing a zero-coupon bond	 126

Spot and zero rates	 127



Table of Contents

[ iv ]

Bootstrapping a yield curve	 127
Forward rates	 131
Calculating the yield to maturity	 133
Calculating the price of a bond	 134
Bond duration	 135
Bond convexity	 136
Short-rate modeling	 137

The Vasicek model	 138
The Cox-Ingersoll-Ross model	 140
The Rendleman and Bartter model	 141
The Brennan and Schwartz model	 143

Bond options	 144
Callable bonds	 145
Puttable bonds	 146
Convertible bonds	 146
Preferred stocks	 147

Pricing a callable bond option	 147
Pricing a zero-coupon bond by the Vasicek model	 147
Value of early-exercise	 150
Policy iteration by finite differences	 152
Other considerations in callable bond pricing	 161

Summary	 162
Chapter 6: Interactive Financial Analytics with Python  
and VSTOXX	 165

Volatility derivatives	 166
STOXX and the Eurex 	 166
The EURO STOXX 50 Index	 167
The VSTOXX	 167
The VIX	 167

Gathering the EUROX STOXX 50 Index and VSTOXX data	 168
Merging the data	 172
Financial analytics of SX5E and V2TX	 173
Correlation between SX5E and V2TX	 177
Calculating the VSTOXX sub-indices	 180

Getting the OESX data	 180
Formulas to calculate the VSTOXX sub-index	 182
Implementation of the VSTOXX sub-index value	 184
Analyzing the results	 190

Calculating the VSTOXX main index	 192
Summary	 195



Table of Contents

[ v ]

Chapter 7: Big Data with Python	 197
Introducing big data	 198
Hadoop for big data	 199

HDFS	 199
YARN	 199
MapReduce	 200

Is big data for me?	 200
Getting Apache Hadoop	 201

Getting a QuickStart VM from Cloudera 	 201
Getting VirtualBox	 201
Running Cloudera VM on VirtualBox	 202

A word count program in Hadoop	 206
Downloading sample data	 206
The map program	 207
The reduce program	 207
Testing our scripts	 208
Running MapReduce on Hadoop	 209
Hue for browsing HDFS	 212

Going deeper – Hadoop for finance	 213
Obtaining IBM stock prices from Yahoo! Finance	 213
Modifying the map program	 214
Testing our map program with IBM stock prices	 215
Running MapReduce to count intraday price changes	 215
Performing analysis on our MapReduce results	 217

Introducing NoSQL	 219
Getting MongoDB	 219
Creating the data directory and running MongoDB	 219

Running MongoDB from Windows	 219
Running MongoDB from Mac OS X	 220

Getting PyMongo	 220
Running a test connection	 221
Getting a database	 221
Getting a collection	 222
Inserting a document	 222
Fetching a single document	 223
Deleting documents	 224
Batch-inserting documents	 224
Counting documents in the collection	 224
Finding documents	 225



Table of Contents

[ vi ]

Sorting documents	 225
Conclusion	 226

Summary	 226
Chapter 8: Algorithmic Trading	 229

Introduction to algorithmic trading	 230
List of trading platforms with public API	 231
Which is the best programming language to use?	 232
System functionalities	 232
Algorithmic trading with Interactive Brokers and IbPy	 233

Getting Interactive Brokers' Trader WorkStation	 233
Getting IbPy – the IB API wrapper	 236
A simple order routing mechanism	 237

Building a mean-reverting algorithmic trading system	 242
Setting up the main program	 242
Handling events	 245
Implementing the mean-reverting algorithm	 246
Tracking our positions	 248

Forex trading with OANDA API	 250
What is REST?	 250
Setting up an OANDA account	 250
Exploring the API	 254
Getting oandapy – the OANDA REST API wrapper	 254
Getting and parsing rates data	 254
Sending an order	 255

Building a trend-following forex trading platform	 256
Setting up the main program	 257
Handling events	 258
Implementing the trend-following algorithm	 258
Tracking our positions	 259

VaR for risk management	 261
Summary	 264

Chapter 9: Backtesting	 267
An introduction to backtesting	 268

Concerns in backtesting	 268
Concept of an event-driven backtesting system	 269

Designing and implementing a backtesting system	 270
The TickData class	 271
The MarketData class	 272
The MarketDataSource class	 272
The Order class	 273



Table of Contents

[ vii ]

The Position class	 274
The Strategy class	 275
The MeanRevertingStrategy class	 275
The Backtester class	 277
Running our backtesting system	 280
Improving your backtesting system	 283

Ten considerations for a backtesting model	 283
Resources restricting your model	 283
Criteria of evaluation of the model	 284
Estimating the quality of backtest parameters	 284
Be prepared to face model risk	 284
Performance of a backtest with in-sample data	 284
Addressing common pitfalls in backtesting	 285
Have a common sense idea of your model	 285
Understanding the context for the model	 286
Make sure you have the right data	 286
Data mine your results	 286

Discussion of algorithms in backtesting	 287
K-means clustering	 287
K-nearest neighbor machine learning algorithm	 287
Classification and regression tree analysis	 287
The 2k factorial design	 288
The genetic algorithm	 288

Summary	 289
Chapter 10: Excel with Python	 291

Overview of COM	 292
Excel for finance	 292
Building a COM server	 293

Prerequisites	 293
Getting the pythoncom module	 293
Building the Black-Scholes model COM server	 294
Registering and unregistering the COM server	 295
Building the Cox-Ross-Rubinstein binomial tree model COM server	 295
Building the trinomial lattice model COM server	 296

Building the COM client in Excel	 298
Setting up the VBA code	 298
Setting up the cells	 300

What else can I do with COM?	 303
Summary	 304

Index	 305





[ ix ]

Preface
Python is widely practiced in various sectors of finance, such as banking, investment 
management, insurance, and even real estate, for building tools that help in 
financial modeling, risk management, and trading. Even big financial corporations 
embrace Python to build their infrastructure for position management, pricing, risk 
management, and trading systems.

Throughout this book, theories from academic financial studies will be introduced, 
accompanied by their mathematical concepts to help you understand their uses in 
practical situations. You will see how Python is applied to classical pricing models, 
linearity, and nonlinearity of finance, numerical procedures, and interest rate 
models, that form the foundations of complex financial models. You will learn about 
the root-finding methods and finite difference pricing for developing an implied 
volatility curve with options.

With the advent of advanced computing technologies, methods for the storing and 
handling of massive amounts of data have to be considered. Hadoop is a popular 
tool in big data. You will be introduced to the inner workings of Hadoop and its 
integration with Python to derive analytical insights on financial data. You will also 
understand how Python supports the use of NoSQL for storing non-structured data.

Many brokerage firms are beginning to offer APIs to customers to trade using  
their own customized trading software. Using Python, you will learn how to connect 
to a broker API, retrieve market data, generate trading signals, and send orders 
to the exchange. The implementation of the mean-reverting and trend-following 
trading strategies will be covered. Risk management, position tracking, and 
backtesting techniques will be discussed to help you manage the performance  
of your trading strategies.
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The use of Microsoft Excel is pervasive in the financial industry, from bond  
trading to back-office operations. You will be taught how to create numerical  
pricing Component Object Model (COM) servers in Python that will enable  
your spreadsheets to compute and update model values on the fly.

What this book covers
Chapter 1, Python for Financial Applications, explores the aspects of Python in judging 
its suitability as a programming language in finance. The IPython Notebook is 
introduced as a beneficial tool to visualize data and to perform scientific computing.

Chapter 2, The Importance of Linearity in Finance, uses Python to solve systems  
of linear equations, perform integer programming, and apply matrix algebra  
to linear optimization of portfolio allocation.

Chapter 3, Nonlinearity in Finance, discusses the nonlinear models in finance and  
root-finding methods using Python.

Chapter 4, Numerical Procedures, explores trees, lattices, and finite differencing 
schemes for valuation of options.

Chapter 5, Interest Rates and Derivatives, discusses the bootstrapping process of 
the yield curve and covers some short rate models for pricing the interest rate 
derivatives with Python.

Chapter 6, Interactive Financial Analytics with Python and VSTOXX, discusses the 
volatility indexes. We will perform analytics on EURO STOXX 50 Index and 
VSTOXX data, and replicate the main index using options prices of the sub-indexes.

Chapter 7, Big Data with Python, walks you through the uses of Hadoop for big data 
and covers how to use Python to perform MapReduce operations. Data storage  
with NoSQL will also be covered.

Chapter 8, Algorithmic Trading, discusses a step-by-step approach to develop a  
mean-reverting and trend-following live trading infrastructure using Python and  
the API of a broker. Value-at-risk (VaR) for risk management will also be covered.

Chapter 9, Backtesting, discusses how to design and implement an event-driven 
backtesting system and helps you visualize the performance of our simulated  
trading strategy.

Chapter 10, Excel with Python, discusses how to build a Component Object Model 
(COM) server and client interface to communicate with Excel and to perform 
numerical pricing on the call and put options on the fly.
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What you need for this book
In this book, the following software will be required:

•	 The operating systems are as follows:
°° Any operating system with Python 2.7 or higher installed
°° Microsoft Windows XP or superior for Chapter 10, Excel with Python
°° A 64-bit host operating system with 4 GB of RAM for Chapter 7,  

Big Data with Python

•	 One of the following Python distribution packages that include Python, 
SciPy, pandas, IPython, and Matplotlib modules, which will be used 
throughout this book:

°° Anaconda 2.1 or higher from Continuum Analytics at  
https://store.continuum.io/cshop/anaconda/

°° Canopy 1.5 or higher from Enthought at https://store.
enthought.com/downloads/

•	 Additional required Python modules are as follows:
°° Statsmodels at http://statsmodels.sourceforge.net/
°° PuLP for Chapter 2, The Importance of Linearity in Finance at  

https://github.com/coin-or/pulp

°° lxml for Chapter 6, Interactive Financial Analytics with Python and 
VSTOXX at http://lxml.de/

°° PyMongo 2.7 for Chapter 7, Big Data with Python at https://pypi.
python.org/pypi/pymongo/

°° IbPy for Chapter 8, Algorithmic Trading at https://github.com/
blampe/IbPy

°° oandapy for Chapter 8, Algorithmic Trading at https://github.com/
oanda/oandapy

°° python-requests for Chapter 8, Algorithmic Trading at https://pypi.
python.org/pypi/requests/

°° PyWin32 for Chapter 10, Excel with Python at http://sourceforge.
net/projects/pywin32/files/

•	 Optional Python modules are as follows:
°° pip 6.0 to install Python packages automatically, at  

https://pypi.python.org/pypi/pip

https://store.continuum.io/cshop/anaconda/
https://store.enthought.com/downloads/
https://store.enthought.com/downloads/
http://statsmodels.sourceforge.net/
https://github.com/coin-or/pulp
http://lxml.de/
https://pypi.python.org/pypi/pymongo/
https://pypi.python.org/pypi/pymongo/
https://github.com/blampe/IbPy
https://github.com/blampe/IbPy
https://github.com/oanda/oandapy
https://github.com/oanda/oandapy
https://pypi.python.org/pypi/requests/
https://pypi.python.org/pypi/requests/
http://sourceforge.net/projects/pywin32/files/
http://sourceforge.net/projects/pywin32/files/
https://pypi.python.org/pypi/pip
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•	 The required softwares are as follows:
°° Mozilla Firefox at https://www.mozilla.org/en-US/firefox/new/
°° MongoDB 2.6 for Chapter 7, Big Data with Python at  

http://www.mongodb.org/downloads

°° VirtualBox 4.3 for Chapter 7, Big Data with Python at  
https://www.virtualbox.org/wiki/Downloads

°° Cloudera QuickStart VM with CDH (Cloudera Distribution Including 
Apache Hadoop) for Chapter 7, Big Data with Python at http://www.
cloudera.com/content/cloudera/en/downloads/quickstart_
vms.html

°° Interactive Brokers (IB) Trader Workstation (TWS) for Chapter 8, 
Algorithmic Trading at https://www.interactivebrokers.com/en/
index.php?f=1537

°° Oracle Java 7 to run IB TWS and OANDA fxTrade platform for 
Chapter 8, Algorithmic Trading.

°° Microsoft Office Excel 2010 or higher with developer and macros 
enabled for Chapter 10, Excel with Python.

Who this book is for
This book is geared toward students and programmers developing financial 
applications, consultants offering financial services, financial analysts, and quants 
who would like to master finance by harnessing Python's strengths in data 
visualization, interactive analytics, and scientific computing. An intermediate level 
of Python knowledge and financial concepts is expected. Beginners will receive an 
introductory background before jumping into the technical process of each chapter.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"The price function of the BinomialEuropeanOption class is a public method  
that is the entry point for all the instances of this class."

https://www.mozilla.org/en-US/firefox/new/
http://www.mongodb.org/downloads
https://www.virtualbox.org/wiki/Downloads
http://www.cloudera.com/content/cloudera/en/downloads/quickstart_vms.html
http://www.cloudera.com/content/cloudera/en/downloads/quickstart_vms.html
http://www.cloudera.com/content/cloudera/en/downloads/quickstart_vms.html
https://www.interactivebrokers.com/en/index.php?f=1537
https://www.interactivebrokers.com/en/index.php?f=1537
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A block of code is set as follows:

    def _traverse_tree_(self, payoffs):
        # Starting from the time the option expires, traverse
        # backwards and calculate discounted payoffs at each node
        for i in range(self.N):
            payoffs = (payoffs[:-1] * self.qu +
                       payoffs[1:] * self.qd) * self.df

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

    Set BinCRRTree = CreateObject("BinomialCRRCOMServer.Pricer")
    answer = BinCRRTree.pricer(S0, K, r, T, N, sigma, isCall, _
        dividend, True)

Any command-line input or output is written as follows:

>>> from FDCnEu import FDCnEu

>>> option = FDCnEu(50, 50, 0.1, 5./12., 0.4, 100, 100,

...                 100, False)

>>> print option.price()

New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "We 
can compile the code by selecting Debug from the toolbar menu and clicking on 
Compile VBAProject:"

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it  
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.
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Python for Financial 
Applications

In this introductory chapter, we will explore the aspects of Python in order to judge its 
suitability as a programming language in finance. Notably, Python is widely practiced 
in various financial sectors, such as banking, investment management, insurance, and 
even in real estate for building tools that help in financial modeling, risk management, 
and trading. To help you get the most from the multitude of features that Python 
has to offer, we will introduce the IPython Notebook as a beneficial tool to help you 
visualize data and to perform scientific computing for presentation to end users.

In this chapter, we will cover the following topics:

•	 Benefits of Python over other programming languages for financial studies
•	 Features of Python for financial applications
•	 Implementing object-oriented design and functional design in Python
•	 Overview of IPython
•	 Getting IPython and IPython Notebook started
•	 Creating and saving notebook documents
•	 Various formats to export a notebook document
•	 Notebook document user interface
•	 Inserting Markdown language into a notebook document
•	 Performing calculations in Python in a notebook document
•	 Creating plots in a notebook document
•	 Various ways of displaying mathematical equations in a notebook document
•	 Inserting images and videos into a notebook document 
•	 Working with HTML and pandas DataFrame in a notebook document
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Is Python for me?
Today's financial programmers have a diverse choice of programming languages 
in implementing robust software solutions, ranging from C, Java, R, and MATLAB. 
However, each programming language was designed differently to accomplish 
specific tasks. Their inner workings, behavior, syntax, and performance affect the 
results of every user differently.

In this book, we will focus exclusively on the use of Python for analytical and 
quantitative finance. Originally intended for scientific computations, the Python 
programming language saw an increasingly widespread use in financial operations. 
In particular, pandas, a software library written for the Python programming 
language, was open sourced by an employee of AQR Capital Management to offer 
high-performance financial data management and quantitative analysis.

Even big financial corporations embrace Python to architect their infrastructure. 
Bank of America's Quartz platform uses Python for position management, 
pricing, and risk management. JP Morgan's Athena platform, a cross-market risk 
management and trading system, uses Python for flexibility in combination with 
C++ and Java.

The application of Python in finance is vast, and in this book, we will cover the 
fundamental topics in creating financial applications, such as portfolio optimization, 
numerical pricing, interactive analytics, big data with Hadoop, and more.

Here are some considerations on why you might use Python for your next  
financial application.

Free and open source
Python is free in terms of license. Documentation is widely available, and many 
Python online community groups are available, where one can turn in times of 
doubt. Because it is free and open source, anyone can easily view or modify the 
algorithms in order to adapt to customized solutions.

Being accessible to the public opens a whole new level of opportunities. Anyone 
can contribute existing enhancements or create new modules. For advanced 
users, interoperability between different programming languages is supported. A 
Python interpreter may be embedded in C and C++ programs. Likewise, with the 
appropriate libraries, Python may be integrated with other languages not limited  
to Fortran, Lisp, PHP, Lua, and more.

Python is available on all major operating systems, such as Windows, Unix, OS/2, 
Mac, among others.
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High-level, powerful, and flexible
Python as a general-purpose, high-level programming language allows the user to 
focus on problem solving and leave low-level mechanical constructs such as memory 
management out of the picture.

The expressiveness of the Python programming language syntax helps quantitative 
developers in implementing prototypes quickly.

Python allows the use of object-oriented, procedural, as well as functional 
programming styles. Because of this flexibility, it is especially useful in implementing 
complex mathematical models containing multiple changeable parameters.

A wealth of standard libraries
By now, you should be familiar with the NumPy, SciPy, matplotlib, statsmodels, 
and pandas modules, as indispensable tools in quantitative analysis and  
data management.

Other libraries extend the functionalities of Python. For example, one may turn 
Python into a data visualization tool with the gnuplot package in visualizing 
mathematical functions and data interactively. With Tk-based GUI tools such as 
Tkinter, it is possible to turn Python scripts into GUI programs.

A widely popular shell for Python is IPython, which provides interactive computing 
and high-performance tools for parallel and distributed computing. With IPython 
Notebook, the rich text web interface of IPython, you can share code, text, 
mathematical expressions, plots, and other rich media with your target audience. 
IPython was originally intended for scientists to work with Python and data.

Objected-oriented versus functional 
programming
If you are working as a programmer in the finance industry, chances are that 
your program will be built for handling thousands or millions of dollars' worth in 
transactions. It is crucial that your programs are absolutely free of errors. More often 
than not, bugs arise due to unforeseen circumstances. As financial software systems 
and models become larger and more complex, practicing good software design is 
crucial. While writing the Python code, you may want to consider the object-oriented 
approach or the functional approach to structure your code for better readability.
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The object-oriented approach
As the demand for clarity, speed, and flexibility in your program increases, it is 
important to keep your code readable, manageable, and lean. One popular technical 
approach to building software systems is by applying the object-oriented paradigm. 
Consider the following example of displaying a greeting message as a class:

class Greeting(object):

    def __init__(self, my_greeting):
        self.my_greeting = my_greeting

    def say_hello(self, name):
        print "%s %s" % (self.my_greeting, name)

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/ support and register to have the files e-mailed directly to you.

We created a class called Greeting that is capable of accepting an input argument 
in its constructor. For this example, we will define our greeting as "Hello". 
The say_hello function is invoked with an input name and prints our greeting 
messages as follows:

>>> greeting = Greeting("Hello")

>>> greeting.say_hello("World")

>>> greeting.say_hello("Dog")

>>> greeting.say_hello("Cat")

Hello World

Hello Dog

Hello Cat

The functional approach
We can achieve the same Greeting functionality using the functional approach. 
Functional programming is a programming paradigm, where computer programs 
are structured and styled in such a way that they can be evaluated as mathematical 
functions. These pseudo mathematical functions avoid changing state data, while 
increasing reusability and brevity.

In Python, a function object can be assigned to a variable and, like any other 
variables, can be passed into functions as an argument as well as return its value.

http://www.packtpub.com
http://www.packtpub.com/
http://www.packtpub.com/
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Let's take a look at the following code that gives us the same output:

from functools import partial
def greeting(my_greeting, name):
    print "%s %s" % (my_greeting, name)

Here, we defined a function named greeting that takes in two arguments. Using the 
partial function of the functools module, we treated the function, greeting, as an 
input variable, along with our variable greeting message as Hello.

>>> say_hello_to = partial(greeting, "Hello")

>>> say_hello_to("World")

>>> say_hello_to("Dog")

>>> say_hello_to("Cat")

We assigned the say_hello_to variable as its return value, and reused this variable 
in printing our greetings with three different names by executing it as a function that 
accepts input arguments.

Which approach should I use?
There is no clear answer to this question. We have just demonstrated that Python 
supports both the object-oriented approach and the functional approach. We can see 
that in certain circumstances the functional approach in software development is 
brevity to a large extent. Using the say_hello_to function provides better readability 
over greeting.say_hello(). It boils down to the programmer's decision as to what 
works best in making the code more readable and having ease of maintenance during 
the software life cycle while collaborating with fellow developers.

As a general rule of thumb, in large and complex software systems representing 
objects as classes helps in code management between team members. By working 
with classes, the scope of work can be more easily defined, and system requirements 
can be easily scaled using object-oriented design. When working with financial 
mathematical models, using functional programing helps to keep the code working 
in the same fashion as its accompanying mathematical concepts.

Which Python version should I use?
The code examples in this book have been tested in Python 2.7 but are optimized to 
run on Python 3. Many of the third-party Python modules mentioned in this book 
require at least Python 2.7, and some do not have support for Python 3 as yet. To 
achieve the best compatibility, it is recommended that you install Python 2.7 on  
your workstation.
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If you have not installed Python on your workstation, you can find out more about 
Python from the official source at https://www.python.org. However, in order to 
build financial applications from the examples, you are required to use a number 
of additional third-party Python modules such as NumPy, SciPy, and pandas. It 
is recommended that you obtain an all-in-one installer to ease the installation 
procedures. The following are some popular installers that include hundreds  
of supported packages:

•	 Anaconda by Continuum Analytics at https://store.continuum.io/
cshop/anaconda

•	 Canopy by Enthought at https://store.enthought.com

Introducing IPython
IPython is an interactive shell with high-performance tools used for parallel and 
distributed computing. With the IPython Notebook, you can share code, text, 
mathematical expressions, plots, and other rich media with your target audience.

In this section, we will learn how to get started and run a simple IPython Notebook.

Getting IPython
Depending on how you have installed Python on your machine, IPython might 
have been included in your Python environment. Please consult the IPython official 
documentation for the various installation methods most comfortable for you. The 
official page is available at http://ipython.org.

IPython can be downloaded from https://github.com/ipython. To install 
IPython, unpack the packages to a folder. From the terminal, navigate to the  
top-level source directory and run the following command:

$ python setup.py install

Using pip
The pip tool is a great way to install Python packages automatically. Think of it as 
a package manager for Python. For example, to install IPython without having to 
download all the source files, just run the following command in the terminal:

$ pip install ipython

To get pip to work in the terminal, it has to be installed as a Python module. 
Instructions for downloading and installing pip can be found at https://pypi.
python.org/pypi/pip.

https://www.python.org
https://store.continuum.io/cshop/anaconda
https://store.continuum.io/cshop/anaconda
https://store.enthought.com
http://ipython.org
https://github.com/ipython
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/pip
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The IPython Notebook
The IPython Notebook is the web-based interactive computing interface of IPython 
used for the whole computation process of developing, documenting, and executing 
the code. This section covers some of the common features in IPython Notebook that 
you may consider using for building financial applications.

Here is a screenshot of the IPython Notebook in Windows OS:

Notebooks allow in-browser editing and executing of the code with the outputs 
attached to the code that generated them. It has the capability of displaying rich 
media, including images, videos, and HTML components.

Its in-browser editor allows the Markdown language that can provide rich text and 
commentary for the code.

Mathematical notations can be included with the use of LaTeX, rendered natively by 
MathJax. With the ability to import Python modules, publication-quality figures can 
be included inline and rendered using the matplotlib library.
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Notebook documents
Notebook documents are saved with the .ipynb extension. Each document contains 
everything related to an interactive session, stored internally in the JSON format. 
Since JSON files are represented in plain text, this allows notebooks to be version 
controlled and easily sharable.

Notebooks can be exported to a range of static formats, including HTML, LaTeX, 
PDF, and slideshows.

Notebooks can also be available as static web pages and served to the public via 
URLs using nbviewer (IPython Notebook Viewer) without users having to install 
Python. Conversion is handled using the nbconvert service.

Running the IPython Notebook
Once you have IPython successfully installed in the terminal, type the following 
command:

$ ipython notebook

This will start the IPython Notebook server service , which runs in the terminal.  
By default, the service will automatically open your default web browser and 
navigate to the landing page. To access the notebook program manually, enter  
the http://localhost:8888 URL address in your web browser.

By default, a notebook runs in port 8888. To infer the correct notebook 
address, check the log output from the terminal.

The landing page of the notebook web application is called the dashboard, which 
shows all notebooks currently available in the notebook directory. By default, this 
directory is the one from which the notebook server was started.

Creating a new notebook
Click on New Notebook from the dashboard to create a new notebook. You can 
navigate to the File | New menu option from within an active notebook:
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Here, you will be presented with the notebook name, a menu bar, a toolbar, and an 
empty code cell.

The menu bar presents different options that may be used to manipulate the way the 
notebook functions.

The toolbar provides shortcuts to frequently used notebook operations in the  
form of icons.

Notebook cells
Each logical section in a notebook is known as a cell. A cell is a multi-line text input 
field that accepts plain text. A single notebook document contains at least one cell 
and can have multiple cells.

To execute the contents of a cell, from the menu bar, go to Cell | Run, or click on  
the Play button from the toolbar, or use the keyboard shortcut Shift + Enter.
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Each cell can be formatted as a Code, Markdown, Raw NBConvert, or heading cell:

Code cell
By default, each cell starts off as a code cell, which executes the Python code 
when you click on the Run button. Cells with a rounded rectangular box and gray 
background accept text inputs. The outputs of the executed box are displayed in  
the white space immediately below the text input.

Markdown cell
Markdown cells accept the Markdown language that provides a simple way to 
format plain text into rich text. It allows arbitrary HTML code for formatting.

Mathematical notations can be displayed with standard LaTeX and AMS-LaTeX 
(the amsmath package). Surround the LaTeX equation with $ to display inline 
mathematics, and $$ to display equations in a separate block. When executed, 
MathJax will render Latex equations with high-quality typography.

Raw NBConvert cell
Raw cells provide the ability to write the output directly and are not evaluated  
by the notebook.

Heading cells
Cells may be formatted as a heading cell, from level 1 (top level) to level 6 (paragraph). 
These are useful for the conceptual structure of your document or to construct a table 
of contents.
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Simple exercises with IPython Notebook
Let's get started by creating a new notebook and populating it with some content. 
We will insert the various types of objects to demonstrate the various tasks.

Creating a notebook with heading and  
Markdown cells
We will begin by creating a new notebook by performing the following steps:

1.	 Click on New Notebook from the dashboard to create a new notebook. If 
from within an active notebook, navigate to the File | New menu option.

2.	 In the input field of the first cell, enter a page title for this notebook. In this 
example, type in Welcome to Hello World.

3.	 From the options toolbar menu, go to Cells | Cell Type and select Heading 
1. This will format the text we have entered as the page title. The changes, 
however, will not be immediate at this time.

4.	 From the options toolbar menu, go to Insert | Insert Cell Below. This will 
create another input cell below our current cell.

5.	 In this example, we will insert the following piece of text that contains the 
Markdown code:
Text Examples
===

This is an example of an *italic* text.

This is an example of a **bold*** text.

This is an example of a list item:
- Item #1
- Item #2
- Item #3

---

#heading 1
##heading 2
###heading 3
####heading 4
#####heading 5
######heading 6
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6.	 From the toolbar, select Markdown instead of Code.
7.	 To run your code, go to Cell | Run All. This option will run all the Python 

commands and format your cells as required.

When the current cell is executed successfully, the notebook 
will focus on the next cell below, ready for your next input. If 
no cell is available, one will be automatically created and will 
receive the input focus.

This will give us the following output:

Saving notebooks
Go to File and click on Save and Checkpoint. Our notebook will be saved  
as an .ipynb file.
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Mathematical operations in cells
Let's perform a simple mathematical calculation in the notebook; let's add the 
numbers 3 and 5 and assign the result to the answer variable by typing in the  
code cell:

answer = 3 + 5

From the options menu, go to Insert | Insert Cell Below to add a new code cell  
at the bottom. We want to output the result by typing in the following code in the 
next cell:

print answer

Next, go to Cell | Run All. Our answer is printed right below the current cell.

Displaying graphs
The matplotlib module provides a MATLAB-like plotting framework in Python. 
With the matplotlib.pyplot function, charts can be plotted and rendered as 
graphic images for display in a web browser.

Let's demonstrate a simple plotting functionality of the IPython Notebook. In a new 
cell, paste the following code:

import numpy as np
import math
import matplotlib.pyplot as plt

x = np.linspace(0, 2*math.pi) 
plt.plot(x, np.sin(x), label=r'$\sin(x)$') 
plt.plot(x, np.cos(x), 'ro', label=r'$\cos(x)$') 
plt.title(r'Two plots in a graph') 
plt.legend() 

The first three lines of the code contain the required import statements. Note that  
the NumPy, math, and matplotlib packages are required for the code to work in  
the IPython Notebook.
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In the next statement, the variable x represents our x axis values from 0 through 7 in 
real numbers. The following statement plots the sine function for every value of x. 
The next plot command plots the cosine function for every value of x as a dotted 
line. The last two lines of the code print the title and legend respectively.

Running this cell gives us the following output:

Inserting equations
What is TeX and LaTeX? TeX is the industry standard document markup language 
for math markup commands. LaTeX is a variant of TeX that separates the document 
structure from the content.

Mathematical equations can be displayed using LaTeX in the Markdown parser. 
The IPython Notebook uses MathJax to render LaTeX surrounded with $$ inside 
Markdown.

For this example, we will display a standard normal cumulative distribution function 
by typing in the following command in the cell:

$$N(x) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x} e^{-  
\frac{z^2}{2}}\, dz$$

Select Markdown from the toolbar and run the current cell. This will transform the 
current cell into its respective equation output:
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Besides using the MathJax typesetting, another way of displaying the same equation 
is using the math function of the IPython display module, as follows:

from IPython.display import Math
Math(r'N(x) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x} e^{-  
\frac{z^2}{2}}\, dz')

The preceding code will display the same equation, as shown in the following 
screenshot:

Notice that, since this cell is run as a normal code cell, the output equation is 
displayed immediately below the code cell.

We can also display equations inline with text. For example, we will use the 
following code with a single $ wrapping around the LaTeX expression:

This expression $\sqrt{3x-1}+(1+x)^2$ is an example of a TeX  
inline equation

Run this cell as the Markdown cell. This will transform the current cell into  
the following:

Displaying images
To work with images, such as JPEG and PNG, use the Image class of the IPython 
display module. Run the following code to display a sample image:

from IPython.display import Image
Image(url='http://python.org/images/python-logo.gif')
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On running the code cell, it will display the following output:

Inserting YouTube videos
The lib.display module of the IPython package contains a YouTubeVideo 
function, where you can embed videos hosted externally on YouTube into your 
notebook. For example, run the following code:

from IPython.lib.display import YouTubeVideo

# An introduction to Python by Google.
YouTubeVideo('tKTZoB2Vjuk')  

The video will be displayed below the code, as shown in the following screenshot:
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Working with HTML
Notebook allows HTML representations to be displayed. One common use of HTML 
is the ability to display data with tables. The following code outputs a table with two 
columns and three rows, including a header row:

from IPython.display import HTML
table = """<table>
<tr>
<th>Header 1</th>
<th>Header 2</th>
</tr>
<tr>
<td>row 1, cell 1</td>
<td>row 1, cell 2</td>
</tr>
<tr>
<td>row 2, cell 1</td>
<td>row 2, cell 2</td>
</tr>
</table>"""
HTML(table)

The HTML function will render HTML tags as a string in its input argument. We can 
see the final output as follows:

The pandas DataFrame object as an HTML table
In a notebook, pandas allow DataFrame objects to be represented as HTML tables.

In this example, we will retrieve the stock market data from Yahoo! Finance and 
store them in a pandas DataFrame object with the help of the panas.io.data.web.
DataReader function. Let's use the AAPL ticker symbol as the first argument, yahoo 
as its second argument, the start date of the market data as the third argument, and 
the end date as the last argument:

import pandas.io.data as web
import datetime
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start = datetime.datetime(2014, 1, 1)
end = datetime.datetime(2014, 12, 31)
df = web.DataReader("AAPL", 'yahoo', start, end)
df.head()

With the df.head() command, the first five rows of the DataFrame object that 
contains the market data is displayed as an HTML table in the notebook:

Notebook for finance
You are now ready to place your code in a chronological order and present the 
key financial information, such as plots and data to your audience. Many industry 
practitioners use the IPython Notebook as their preferred editor for financial model 
development in helping them to visualize data better.

You are strongly encouraged to explore the powerful features the IPython Notebook 
has to offer that best suit your modeling needs. A gallery of interesting notebook 
projects used in scientific computing can be found at https://github.com/
ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks.

https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
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Summary
In this chapter, we discussed how Python might be suitable for certain areas 
of finance and also discussed its advantages for our software applications. We 
also considered the functional programming paradigm and the object-oriented 
programming paradigm that are supported in Python, and saw how we can achieve 
brevity in our applications. There is no clear rule as to how one approach may be 
favored over the other. Ultimately, Python gives programmers the flexibility to 
structure their code to the best interests of the project at hand.

We were introduced to IPython, the interactive computing shell for Python, and 
explored its usefulness in scientific computing and rich media presentation. We 
worked on simple exercises on our web browser with the IPython Notebook, and 
learned how to create a new notebook document, insert text with the Markdown 
language, performed simple calculations, plotted graphs, displayed mathematical 
equations, inserted images and videos, rendered HTML, and learned how to use 
pandas to fetch the stock market data from Yahoo! Finance as a DataFrame object 
before presenting its content as an HTML table. This will help us visualize data and 
perform rich media presentations to our audience.

Python is just one of the many powerful programing languages that can be 
considered in quantitative finance studies, not limited to Julia, R, MATLAB, and 
Java. You should be able to present key concepts more effectively in the Python 
language. These concepts, once mastered, can easily be applied to any language  
you choose when creating your next financial application.

In the next chapter, we will explore linear models in finance and techniques used  
in portfolio management.
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The Importance of  
Linearity in Finance

Nonlinear dynamics plays a vital role in our world. Linear models are often 
employed in economics due to their simplicity for studies and easier modeling 
capabilities. In finance, linear models are widely used to help price securities 
and perform optimal portfolio allocation, among other useful things. One of 
the significance of linearity in financial modeling is its assurance that a problem 
terminates at a global optimal solution.

In order to perform prediction and forecasting, regression analysis is widely used 
in the field of statistics to estimate relationships among variables. With an extensive 
mathematics library being one of Python's greatest strength, Python is frequently 
used as a scientific scripting language to aid in these problems. Modules such as the 
SciPy and NumPy packages contain a variety of linear regression functions for data 
scientists to work with.

In traditional portfolio management, the allocation of assets follows a linear pattern, 
and investors have individual styles of investing. We can state the problem of 
portfolio allocation into a system of linear equations, containing either equalities or 
inequalities. These linear systems can then be represented in a matrix form as Ax B= ,  
where A is our known coefficient value, B is the observed result, and x  is the vector 
of values that we want to find out. More often than not, x  contains the optimal 
security weights to maximize our utility. Using matrix algebra, we can efficiently 
solve for x  using either direct or indirect methods.

In this chapter, we will cover the following topics:

•	 Examining the CAPM model with the efficient frontier and capital  
market line

•	 Solving for the security market line using regression
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•	 Examining the APT model and performing a multivariate linear regression
•	 Understanding linear optimization in portfolio allocation
•	 Linear optimization using the PuLP package
•	 Understanding the outcomes of linear programming
•	 Introduction to integer programming
•	 Implementing a linear integer programming model with binary conditions
•	 Solving systems of linear equations with equalities using matrix  

linear algebra
•	 Solving systems of linear equations directly with the LU, Cholesky,  

and QR decomposition
•	 Solving systems of linear equations indirectly with the Jacobi and  

Gauss-Seidel method

The capital asset pricing model and the 
security market line
Many financial literatures devote exclusive discussions to the capital asset pricing 
model (CAPM). In this section, we will explore the key concepts that highlight the 
importance of linearity in finance.

In the famous CAPM, the relationship between risk and rates of returns in a security 
is described as follows:

( )i f i mkt fR R R Rβ= + −

For a security i , its returns is defined as iR  and its beta as iβ . The CAPM defines the 
return of the security as the sum of the risk-free rate fR  and the multiplication of 
its beta with the risk premium. The risk premium can be thought of as the market 
portfolio's excess returns exclusive of the risk-free rate. The following figure is a 
visual representation of the CAPM:
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Beta is a measure of the systematic risk of a stock; a risk that cannot be diversified 
away. In essence, it describes the sensitivity of stock returns with respect to 
movements in the market. For example, a stock with a beta of zero produces no 
excess returns regardless of the direction the market moves—it can only grow at the 
risk-free rate. A stock with a beta of 1 indicates that the stock moves perfectly with 
the market.

The beta is mathematically derived by dividing the covariance of returns between 
the stock and the market with the variance of the market returns.

The CAPM model measures the relationship between risk and stock returns for 
every stock in the portfolio basket. By outlining the sum of this relationship, 
we obtain combinations or weights of risky securities that produce the lowest 
portfolio risk for every level of portfolio return. An investor who wishes to receive 
a particular return would own one such combination of an optimal portfolio that 
provides the least risk possible. The combinations of optimal portfolios lie along a 
line called the efficient frontier.

Along the efficient frontier, there exists a tangent point that denotes the best 
optimal portfolio available giving the highest rate of return in exchange for the 
lowest risk possible. This optimal portfolio at the tangent point is known as the 
market portfolio.
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There exists a straight line drawn from the market portfolio to the risk-free rate. 
This line is called the capital market line (CML). The CML can be thought of as the 
highest Sharpe ratio available among all the other Sharpe ratios of optimal portfolios. 
The Sharpe ratio is a risk-adjusted performance measure defined as the portfolio's 
excess returns over the risk-free rate per unit of its risk in standard deviations. 
Investors are particularly interested in holding the combinations of assets along  
the CML line. Let's take a look at the following graphical figure:

Another line of interest in CAPM studies is the security market line (SML). The SML 
plots the asset's expected returns against its beta. For a security with a beta value 
of 1, its returns perfectly match the market's returns. Any security priced above the 
SML is deemed to be undervalued since investors expect a higher return given the 
same amount of risk. Conversely, any security priced below the SML is deemed  
to be overvalued:
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Suppose we are interested in finding the beta iβ  of a security. We can regress the 
company's stock returns ir  against the market's returns Mr  along with an intercept 
α  in the form the equation i Mr rα β= + .

Consider the set of stock return and market return data measured over five  
time periods:

Time period Stock returns Market returns
1 0.065 0.055
2 0.0265 -0.09
3 -0.0593 -0.041
4 -0.001 0.045
5 0.0346 0.022

Using the stats module of SciPy, we will perform a least squares regression on  
the CAPM model, and derive the values of α  and iβ  by running the following code 
in Python:

""" Linear regression with SciPy """
from scipy import stats

stock_returns = [0.065, 0.0265, -0.0593, -0.001, 0.0346]
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mkt_returns = [0.055, -0.09, -0.041, 0.045, 0.022]

beta, alpha, r_value, p_value, std_err = \
    stats.linregress(stock_returns, mkt_returns)

The scipy.stats.linregress function returns the slope of the regression line, 
the intercept of the regression line, the correlation coefficient, the p-value for a 
hypothesis test with null hypothesis of a zero slope, and the standard error of the 
estimate. We are interested in finding the slope and intercept of the line:

>>> print beta, alpha

0.507743187877  -0.00848190035246

The beta of the stock is 0.5077.

The equation describing the SML can be written as:

( ) ( )i f i M fE R R E R Rβ  = + − 

The term ( )M fE R R−  is the market risk premium, and ( )ME R  is the expected return 
on the market portfolio. fR  is the return on the risk-free rate, ( )iE R  is the expected 
return on asset i , and iβ  is the beta of asset.

Suppose the risk-free rate is 5 percent and the market risk premium is 8.5 percent. 
What is the expected return of the stock? Based on the CAPM, the equity with a beta 
of 0.5077 would have a risk premium of 0.5077 8.5%× , or 4.3 percent. The risk-free 
rate is 5 percent, so the expected return on the equity is 9.3 percent.

Should the security be observed in the same time period to have a higher return  
(for example, 10.5 percent) than the expected stock return, the security can be said  
to be undervalued, since the investor can expect greater return for the same amount 
of risk.

Conversely, should the return of the security be observed to have a lower return  
(for example, 7 percent) than the expected return as implied by the SML, the security 
can be said to be overvalued. The investor receives less return for assuming the  
same amount of risk.
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The Arbitrage Pricing Theory model
The CAPM suffers from several limitations, such as the use of a mean-variance 
framework and the fact that returns are captured by one risk factor—the market risk 
factor. In a well-diversified portfolio, the unsystematic risk of various stocks cancels 
out and is essentially eliminated.

The Arbitrage Pricing Theory (APT) model was put forward to address these 
shortcomings and offers a general approach of determining the asset prices other 
than the mean and variances. 

The APT model assumes that the security returns are generated according to 
multiple factor models, which consist of a linear combination of several systematic 
risk factors. Such factors could be the inflation rate, GDP growth rate, real interest 
rates, or dividends.

The equilibrium asset pricing equation according to the APT model is as follows:

[ ] ,1 1 ,2 2 ,i i i i i j jE R F F Fα β β β= + + + +�

Here,  is the expected rate of return on security i , iα  is the expected return 
on stock iif all factors are negligible, ,i jβ  is the sensitivity of the i th asset to the j th 
factor, and jF  is the value of the jth factor influencing the return on stock i .

Since our goal is to find all values of iα  and β , we will perform a multivariate linear 
regression on the APT model.

Multivariate linear regression of factor 
models
Many Python packages such as SciPy come with several variants of regression 
functions. In particular, the statsmodels package is a complement to SciPy with 
descriptive statistics and estimation of statistical models. The official page for 
statsmodels is http://statsmodels.sourceforge.net/.

In this example, we will use the ols function of the statsmodels module to perform 
an ordinary least squares regression and view its summary.

http://statsmodels.sourceforge.net/
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Let's assume that you have implemented an APT model with seven factors that 
return the values of Y. Consider the following set of data collected over 9 time 
periods, 1t  to 9t . X1 to X7 are independent variables observed at each period. The 
regression problem is therefore structured as: ,1 1 ,2 2 ,7 7l l lY X F X F X F c= + + + +� .

A simple ordinary least squares regression on values of X and Y can be performed 
with the following code:

""" Least squares regression with statsmodels """
import numpy as np
import statsmodels.api as sm

# Generate some sample data
num_periods = 9
all_values = np.array([np.random.random(8)
                       for i in range(num_periods)])

# Filter the data
y_values = all_values[:, 0]  # First column values as Y
x_values = all_values[:, 1:]  # All other values as X

x_values = sm.add_constant(x_values)  # Include the intercept
results = sm.OLS(y_values, x_values).fit()  # Regress and  
fit the model

Let's view the detailed statistics of the regression:

>>> print results.summary()

The OLS regression results will output a pretty long table of statistical information. 
However, our interest lies in the particular section that gives us the coefficients of 
our APT model:

============================================= 

                 coef    std err          t       

--------------------------------------------- 

const          0.5224      0.825      0.633     

x1             0.0683      0.246      0.277     

x2             0.1455      1.010      0.144      

x3            -0.2451      0.330     -0.744      

x4             0.5907      0.830      0.712      

x5            -0.3252      0.256     -1.271      

x6            -0.2375      0.788     -0.301      

x7            -0.1880      0.703     -0.267 
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Similarly, we can use the params function to display our coefficients of interest:

>>> print results.params

[ 0.52243605  0.06827488  0.14550665 -0.24508947  0.5907154    
-0.32515442  -0.23751989  -0.18795065]

Both the function calls produce the same coefficient values for the APT model in the 
same order.

Linear optimization
In the CAPM and APT pricing theories, we assumed linearity in the models and 
solved for expected security prices using regressions in Python.

As the number of securities in our portfolio increases, certain limitations are 
introduced as well. A portfolio manager would find himself constrained by these 
rules in pursing certain objectives mandated by investors.

Linear optimization helps you overcome the problem of portfolio allocation. 
Optimization focuses on minimizing or maximizing the value of the objective 
functions. The examples are maximizing returns and minimizing volatility. These 
objectives are usually governed by certain regulations, such as no short-selling rule, 
limits on the number of securities to be invested, and so on.

Unfortunately, in Python there is no single official package that supports this solution. 
However, there are third-party packages available with the implementation of the 
simplex algorithm for linear programming. For the purpose of this demonstration, 
we will use PuLP, an open source linear programming modeler, to assist us in this 
particular linear programming problem.

Getting PuLP
You can obtain PuLP from https://github.com/coin-or/pulp. The project page 
contains a comprehensive list of documentations to help you get started with your 
optimization process.

https://github.com/coin-or/pulp
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A simple linear optimization problem
Suppose that we are interested in investing in two securities, x  and y. We would like 
to find out the actual number of units to invest for every 3 units of security X and 2 
units of security Y, such that the total number of units invested is maximized, where 
possible. However, there are certain constraints on our investment strategy:

•	 For every 2 units of security X invested and 1 unit of security Y invested,  
the total volume must not exceed 100

•	 For every unit of security X and Y invested, the total volume must not  
exceed 80

•	 The total volume allowed to invest in security X must not exceed 40
•	 Short selling is not allowed for both the securities

The maximization problem can be mathematically represented as follows:

Maximize: f(x,y) = 3x+2y

:Subject to

2 100x y+ ≤

80x y+ ≤

40x ≤

0, 0x y≥ ≥

By plotting the constraints on an x by y  graph, the set of feasible solutions is shown 
in the shaded area:
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The problem can be translated to Python with the PuLP package:

""" A simple linear optimization problem with 2 variables """
import pulp

x = pulp.LpVariable("x", lowBound=0)
y = pulp.LpVariable("y", lowBound=0)

problem = pulp.LpProblem("A simple maximization objective",
                         pulp.LpMaximize)
problem += 3*x + 2*y, "The objective function"
problem += 2*x + y <= 100, "1st constraint"
problem += x + y <= 80, "2nd constraint"
problem += x <= 40, "3rd constraint"
problem.solve()

The LpVariable function defines a variable to be solved. The LpProblem function 
initializes the problem with a text description of the problem and the type of 
optimization, which in this case is the maximization method. The += operation 
allows an arbitrary number of constraints to be added, along with a text description. 
Finally, the solve function is called to begin performing linear optimization. Each 
variable value is printed to show the values that the optimizer has solved for us.
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The following output is generated when the code runs:

>>> print "Maximization Results:"

>>> for variable in problem.variables():

...     print variable.name, "=", variable.varValue

Maximization Results: 

x = 20.0 

y = 60.0

The results show that obtaining the maximum value of 180 is possible when the 
value of x is 20 and y  is 60 while fulfilling the given set of constraints.

Outcomes of linear programs
There are three outcomes in linear optimization, as follows:

1.	 A local optimal solution to a linear program is a feasible solution with a 
closer objective function value than all other feasible solutions close to it. It 
may or may not be the global optimal solution, which is a solution that is 
better than every feasible solution.

2.	 A linear program is infeasible if a solution cannot be found.
3.	 A linear program is unbounded if the optimal solution is unbounded or  

is infinite.

Integer programming
In the simple optimization problem we have investigated earlier, so far the variables 
have been allowed to be continuous or fractional. What if the use of fractional values 
or results is not realistic? This problem is called the linear integer programming 
problem, where all the variables are restricted as integers. A special case of an integer 
variable is a binary variable that can either be 0 or 1. Binary variables are especially 
useful to model decision making given a set of choices.

Integer programming models are frequently used in operational research to model 
real-world working problems. More often than not, stating nonlinear problems in a 
linear or even binary fashion requires more art than science.
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An example of an integer programming model with 
binary conditions
Suppose we must go for 150 contracts in a particular over-the-counter exotic 
security from three dealers. Dealer X quoted $500 per contract plus handling 
fees of $4,000, regardless of the number of contracts sold. Dealer Y charges $450 
per contract plus a transaction fee of $2,000. Dealer Z charges $450 per contract 
plus a fee of $6,000. Dealer X will sell at most 100 contracts, dealer Y at most 90, 
and dealer Z at most 70. The minimum transaction volume from any dealer is 30 
contracts if any are transacted with that dealer. How should we minimize the cost 
of purchasing 150 contracts?

Using the pulp package, let's set up the required variables:

""" An example of implementing an integer programming model with 
binary conditions """
import pulp

dealers = ["X", "Y", "Z"]
variable_costs = {"X": 500,
                  "Y": 350,
                  "Z": 450}
fixed_costs = {"X": 4000,
               "Y": 2000,
               "Z": 6000}

# Define PuLP variables to solve
quantities = pulp.LpVariable.dicts("quantity", 
                                   dealers, 
                                   lowBound=0, 
                                   cat=pulp.LpInteger) 
is_orders = pulp.LpVariable.dicts("orders", 
                                  dealers, 
                                  cat=pulp.LpBinary)

The dealers variable simply contains the dictionary identifiers that are used to 
reference lists and dictionaries later on. The variable_costs and fixed_costs 
variables are dictionaries that contain their respective contract cost and fees charged 
by each dealer. The PuLP solver solves for the values of quantities and is_orders, 
which are defined by the LpVariable function. The dicts function tells PuLP to 
treat the assigned variable as a dictionary object, using the dealers variable for 
referencing. Note that the quantities variable has a lower boundary of 0 that 
prevents us from entering a short position in any securities. The is_orders values 
are treated as binary objects, indicating whether we should enter into a transaction 
with any of the dealers.
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What is the best approach to modeling this integer programming problem? At first 
glance, this seems fairly straightforward by applying this equation:

[ ]
i z

i i i i
i x

Minimize IsOrder variablecost quantity fixed cost
=

=

× +∑

Where

1,
0,i

if buying fromdealer i
IsOrder

if not buying fromdealer i


= 


30 100xquantity≤ ≤

30 90yquantity≤ ≤

30 70zquantity≤ ≤

150
i z

i
i x
quantity

=

=

=∑

The equation simply states that we want to minimize the total costs with the binary 
variable iIsOrder , determining whether to account for the costs associated with 
buying from a specific dealer should we choose to.

Let's implement this model in Python:

"""
This is an example of implementing an integer programming model with 
binary  
variables
the wrong way.
"""
# Initialize the model with constraints
model = pulp.LpProblem("A cost minimization problem",  
pulp.LpMinimize)
model += sum([(variable_costs[i] * quantities[i] +
               fixed_costs[i])*is_orders[i] for i in dealers]), \
         "Minimize portfolio cost"
model += sum([quantities[i] for i in dealers]) == 150, \
         "Total contracts required"
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model += 30 <= quantities["X"] <= 100, "Boundary of total volume  
of X"
model += 30 <= quantities["Y"] <= 90, "Boundary of total volume of  
Y"
model += 30 <= quantities["Z"] <= 70, "Boundary of total volume of  
Z"

model.solve()

What happens when we run the solver?

TypeError: Non-constant expressions cannot be multiplied

As it turned out, we were trying to perform multiplication on two unknown 
variables, quantities and is_order, which unknowingly led us to perform 
nonlinear programming. Such are the pitfalls encountered when performing  
integer programming.

A different approach with binary conditions
Another method of formulating the minimization objective is to place all unknown 
variables in a linear fashion such that they are additive:

i z

i i i i
i x

Minimize variable cost quantity fixed cost IsOrder
=

=

× + ×∑

Comparing with the previous objective equation, we would obtain the same fixed 
cost values. However, the unknown variable iquantity  remains in the first term of the 
equation. Hence, the variable iquantity  is required to be solved as a function of  
such that the constraints are stated as follows:

30 100i x iIsOrder quantity IsOrder× ≥ ≤ ×

30 90i y iIsOrder quantity IsOrder× ≤ ≤ ×

30 70i z iIsOrder quantity IsOrder× ≤ ≤ ×

Let's apply these formulas in Python:

"""
This is an example of implementing an IP model
with binary variables the correct way.
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"""
# Initialize the model with constraints
model = pulp.LpProblem("A cost minimization problem",
                       pulp.LpMinimize)
model += sum([variable_costs[i]*quantities[i] +
              fixed_costs[i]*is_orders[i] for i in dealers]), \
         "Minimize portfolio cost"
model += sum([quantities[i] for i in dealers]) == 150, \
         "Total contracts required"
model += is_orders["X"]*30 <= quantities["X"] <= \
         is_orders["X"]*100, "Boundary of total volume of X"
model += is_orders["Y"]*30 <= quantities["Y"] <= \
         is_orders["Y"]*90, "Boundary of total volume of Y"
model += is_orders["Z"]*30 <= quantities["Z"] <= \
         is_orders["Z"]*70, "Boundary of total volume of Z"
model.solve()

What happens when we try to run the solver?

>>> print "Minimization Results:"

>>> for variable in model.variables():

...     print variable, "=", variable.varValue

>>>

>>> print "Total cost: %s" % pulp.value(model.objective)

Minimization Results:

orders_X = 0.0

orders_Y = 1.0

orders_Z = 1.0

quantity_X = 0.0

quantity_Y = 90.0

quantity_Z = 60.0

Total cost: 66500.0

The output tells us that buying 90 contracts from the dealer Y and 60 contracts 
from the dealer Z gives us the lowest possible cost of $66,500 while fulfilling all  
the other constraints.

As we can see, careful planning is required in the designing of integer programming 
models to arrive at an accurate solution in order for them to be useful in decision 
making.
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Solving linear equations using matrices
In the previous section, we looked at solving a system of linear equations with 
inequality constraints. If a set of systematic linear equations has constraints that are 
deterministic, we can represent the problem as matrices and apply matrix algebra. 
Matrix methods represent multiple linear equations in a compact manner while 
using the existing matrix library functions.

Suppose we would like to build a portfolio consisting of 3 securities, a, b and c. The 
allocation of the portfolio must meet certain constraints: it must consist of 6 units of 
a long position in security a. With every 2 units of security a, 1 unit of security b, and 
1 unit of security c invested, the net position must be 4 units long. With every 1 unit 
of security a, 3 units of security b, and 2 units of security c invested, the net position 
must be long 5 units.

To find out the number of securities to invest in, we can frame the problem 
mathematically as follows:

2 4a b c+ + =

3 2 5a b c+ + =

6a =

With all of the coefficients visible, the equations are as follows:

2 1 1 4a b c+ + =

1 3 2 5a b c+ + =

1 0 0 6a b c+ + =

Taking the coefficients of the equations and representing them in a matrix form:

2 1 1 4
1 3 2 , , 5
1 0 0 6

a
A x b B

c

     
     = = =     
          
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The linear equations can now be stated as follows:

Ax B=

To solve for the vector x that contains the number of securities to invest in, the 
inverse of matrix A is taken and the equation is written as follows:

1x A B−=

Using the NumPy arrays, the A and B matrices are assigned as follows:

""" Linear algebra with NumPy matrices """
import numpy as np

A = np.array([[2, 1, 1],
              [1, 3, 2],
              [1, 0, 0]])
B = np.array([4, 5, 6])

We can use the linalg.solve function of NumPy to solve a system of linear scalar 
equations:

>>> print np.linalg.solve(A, B )

[  6.  15. -23.] 

The portfolio would require a long position of 6 units of security a, 15 units of 
security b, and a short position of 23 units of security c.

In portfolio management, we can use the matrix system of equations to solve for 
optimal weight allocations of securities, given a set of constraints. As the number 
of securities in the portfolio increases, the size of matrix A increases and it becomes 
computationally expensive to compute the matrix inversion of A. Thus, one may 
consider methods such as the Cholesky decomposition, LU decomposition, QR 
decomposition, the Jacobi method, or the Gauss-Seidel method to break down  
matrix A into simpler matrices for factorization.

The LU decomposition
The LU decomposition, or also known as lower upper factorization, is one of the 
methods of solving square systems of linear equations. As its name implies, the 
LU factorization decomposes matrix A into a product of two matrices: a lower 
triangular matrix L and an upper triangular matrix U. The decomposition can be 
represented as follows:
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A LU=

11 11 12 13

21 22 22 23

31 32 32 33

0 0
0 0

0 0

a b c l u u u
d e f l l u u
g h i l l l u

     
     = ×     
          

Here, we can see 11 11a l u= , 11 12b l u= , and so on. A lower triangular matrix is a 
matrix that contains values in its lower triangle with the remaining upper triangle 
populated with zeros. The converse is true for an upper triangular matrix.

The definite advantage of the LU decomposition method over the Cholesky 
decomposition method is that it works for any square matrices. The latter method 
only works for symmetric and positive definite matrices.

Remember the previous example of a 3 by 3 matrix A. This time, though, we will use 
the linalg package of the SciPy module for the LU decomposition:

""" LU decomposition with SciPy """
import scipy.linalg as linalg
import numpy as np

A = np.array([[2., 1., 1.],
              [1., 3., 2.],
              [1., 0., 0.]])
B = np.array([4., 5., 6.])

LU = linalg.lu_factor(A)
x = linalg.lu_solve(LU, B) 

To view the values of x, execute the following command:

>>> print x

[  6.  15. -23.]

We get the same values of 6, 15, and -23 for a , b, and c respectively.

Note that we used the lu_factor function of scipy.linalg here, which gives the 
LU variable as the pivoted LU decomposition of matrix A. We used the lu_solve 
function that takes in the pivoted LU decomposition and the vector B to solve the 
equation system.
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We can display the LU decomposition of matrix A using the lu function. The lu 
function returns three variables : the permutation matrix P, the lower triangular 
matrix L, and the upper triangular matrix U, individually:

>>> P, L, U = scipy.linalg.lu(A)

When we print out these variables, we can conclude the relationship between the LU 
factorization and matrix A as follows:

2 1 1 1 0 0 2 1 1
1 3 2 0.5 1 0 0 2.5 1.5
1 0 0 0.5 0.2 1 0 0 0.2

A
     
     = = ×     
     − −     

The LU decomposition can be viewed as the matrix form of Gaussian elimination 
performed on two simpler matrices: the upper triangular and lower triangular 
matrices.

The Cholesky decomposition
The Cholesky decomposition is another way of solving systems of linear equations. It 
can be significantly faster and uses a lot of less memory than the LU decomposition 
by exploiting the property of symmetric matrices. However, it is required that the 
matrix being decomposed be Hermitian (or real-valued symmetric and thus square) 
and positive definite. This means that when the matrix A is decomposed as TA LL= , L 
is a lower triangular matrix with real and positive numbers on the diagonals, and TL  
is the conjugate transpose of L.

Let's consider another example of a system of linear equations where matrix A is 
both Hermitian and positive definite. Again, the equation is in the form of Ax B= , 
where A and B take the following values:

10 1 2 0 6
1 11 1 3 25

, ,
2 1 10 1 11
0 3 1 8 15

a
b

A x B
c
d

−     
     − −     = = =
     − − −
     −     

Let's represent these matrices as the NumPy arrays:

""" Cholesky decomposition with NumPy """
import numpy as np
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A = np.array([[10., -1., 2., 0.],
              [-1., 11., -1., 3.],
              [2., -1., 10., -1.],
              [0.0, 3., -1., 8.]])
B = np.array([6., 25., -11., 15.])

L = np.linalg.cholesky(A)

The cholesky function of numpy.linalg would compute the lower triangular factor 
of matrix A. Let's view the lower triangular matrix:

>>> print L

[[ 3.16227766  0.          0.          0.        ]

 [-0.31622777  3.3015148   0.          0.        ]

 [ 0.63245553 -0.24231301  3.08889696  0.        ]

 [ 0.          0.9086738  -0.25245792  2.6665665 ]]

To verify that the Cholesky decomposition results are correct, we can use the 
definition of the Cholesky factorization by multiplying L with its conjugate transpose 
that will lead us back to the values of matrix A:

>>> print np.dot(L, L.T.conj())  # A=L.L*

[[ 10.  -1.   2.   0.]

 [ -1.  11.  -1.   3.]

 [  2.  -1.  10.  -1.]

 [  0.   3.  -1.   8.]]

Before solving for x, we need to solve for TL x as y. We will use the solve function of 
numpy.linalg:

>>> y = np.linalg.solve(L, B)  # L.L*.x=B; When L*.x=y, then L.y=B

To solve for x , all we need to do is to solve again using the conjugate transpose of L 
and y:

>>> x = np.linalg.solve(L.T.conj(), y)  # x=L*'.y

Let's print our result of x:

>>> print x

[ 1.  2. -1.  1.]

The output gives us our values of x  for a, b, c, and d .
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To show that the Cholesky factorization gives us the correct values, we can verify 
the answer by multiplying the matrix A by the transpose of x  to return the values 
of B:

>>> print np.mat(A) * np.mat(x).T  # B=Ax

[[  6.]

 [ 25.]

 [-11.]

 [ 15.]]

This shows that the values of x  by the Cholesky decomposition would lead to the 
same values given by B.

The QR decomposition
The QR decomposition, also known as the QR factorization, is another method 
of solving linear systems of equations using matrices, very much like the LU 
decomposition. The equation to solve is in the form of Ax B= , where matrix A QR= .  
Except in this case, A is a product of an orthogonal matrix Q and upper triangular 
matrix R. The QR algorithm is commonly used to solve the linear least squares 
problem.

An orthogonal matrix exhibits the following properties:

•	 It is a square matrix
•	 Multiplying an orthogonal matrix by its transpose returns the identity 

matrix:

1T TQQ Q Q= =

•	 The inverse of an orthogonal matrix equals its transpose:

1TQ Q−=

An identity matrix is also a square matrix with its main diagonal containing ones and 
zeros elsewhere.
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We can now restate the problem Ax B=  as follows:

QRx B=

1 TRx Q Bor Rx Q B−= =

Using the same variables in the LU decomposition example, we will use the qr 
function of scipy.linalg to compute our values of Q and R, and let the variable y 
represent our value of TBQ  with the following code:

""" QR decomposition with scipy """
import scipy.linalg as linalg
import numpy as np

A = np.array([
    [2., 1., 1.],
    [1., 3., 2.],
    [1., 0., 0]])
B = np.array([4., 5., 6.])

Q, R = scipy.linalg.qr(A)  # QR decomposition
y = np.dot(Q.T, B)  # Let y=Q'.B
x = scipy.linalg.solve(R, y)  # Solve Rx=y

Note that Q.T is simply the transpose of Q, which is also the same as the inverse of Q.

>>> print x

[  6.  15. -23.]

We get the same answers similar to those in the LU decomposition example.

Solving with other matrix algebra methods
So far, we have looked at the use of matrix inversion, the LU decomposition, the 
Cholesky decomposition, and QR decomposition to solve for systems of linear 
equations. Should the size of our financial data in matrix A be large, it can be broken 
down by a number of schemes so that the solution can converge more quickly  
using matrix algebra. Quantitative portfolio analysts ought to be familiar with  
these discussed methods.
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In some circumstances, the solution that we are looking for might not converge. 
Therefore, one might consider the use of iterative methods. The common methods  
of solving systems of linear equations iteratively are the Jacobi method, the  
Gauss-Seidel method, and the SOR method. We will take a brief look at the  
examples in implementing the Jacobi and the Gauss-Seidel method.

The Jacobi method
The Jacobi method solves a system of linear equations iteratively along its diagonal 
elements. The iteration procedure terminates when the solution converges. Again, 
the equation to solve is in the form of Ax B= , where A can be decomposed into a 
diagonal component D and remainder R such that A D R= + . Let's take a look at the 
example of a 4 by 4 matrix A:

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

a b c d a b c d
e f g h f e g h

A
i j k l k i j l
m n o p p m n o

     
     
     = = +
     
     
     

The solution is then obtained iteratively as follows:

Ax B=

( )D R x B+ =

Dx B Rx= −

( )1
1n nx D B Rx+ = −

As opposed to the Gauss-Siedel method, the value of nx  in the Jacobi method is 
needed during each iteration in order to compute 1nx +  and cannot be overwritten. 
This would take up twice the amount of storage. However, the computations for 
each element can be done in parallel, which is useful for faster computations.

If matrix A is strictly irreducibly diagonally dominant, this method is guaranteed 
to converge. A strictly irreducibly diagonally dominant matrix is one where the 
absolute diagonal element in every row is greater than the sum of the absolute  
values of other terms.
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In some circumstances, the Jacobi method can converge even if these conditions are 
not met. The Python code is given as follows:

""" Solve Ax=B with the Jacobi method """
import numpy as np

def jacobi(A, B, n, tol=1e-10):
    # Initializes x with zeroes with same shape and type as B
    x = np.zeros_like(B)
    
    for it_count in range(n):
        x_new = np.zeros_like(x)        
        for i in range(A.shape[0]):
            s1 = np.dot(A[i, :i], x[:i])
            s2 = np.dot(A[i, i + 1:], x[i + 1:])
            x_new[i] = (B[i] - s1 - s2) / A[i, i]

        if np.allclose(x, x_new, tol):
            break

        x = x_new

    return x

Consider the same matrix values in the Cholesky decomposition example. We will 
use 25 iterations in our jacobi function to find the values of x .

A = np.array([[10., -1., 2., 0.],
              [-1., 11., -1., 3.],
              [2., -1., 10., -1.],
              [0.0, 3., -1., 8.]])
B = np.array([6., 25., -11., 15.])
n = 25

After initializing the values, we can now call the function and solve for x:

>>> x = jacobi(A, B, n)

>>> print "x =", x

x = [ 1.  2. -1.  1.]

We solved for the values of x , which are similar to the answers from the Cholesky 
decomposition.
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The Gauss-Seidel method
The Gauss-Seidel method works very much like the Jacobi method. It is another way 
of solving a square system of linear equations using an iterative procedure with the 
equation in the form of Ax B= . Here, the matrix A is decomposed as A L U= + , where 
the matrix A is a sum of a lower triangular matrix L and an upper triangular matrix 
U. Let's take a look at the example of a 4 by 4 matrix A:

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0

a b c d a b c d
e f g h e f g h

A
i j k l i j k l
m n o p m n o p

     
     
     = = +
     
     
     

The solution is then obtained iteratively as follows:

Ax B=

( )L U x B+ =

Lx B Ux= −

( )1
1n nx L B Ux−
+ = −

Using a lower triangular matrix L, where zeroes fill up the upper triangle, the 
elements of nx  can be overwritten in each iteration in order to compute 1nx + .  
This results in the advantage of needing half the storage required when using  
the Jacobi method.

The rate of convergence in the Gauss-Seidel method largely lies in the properties 
of matrix A, especially if matrix A is needed to be strictly diagonally dominant or 
symmetric positive definite. Even if these conditions are not met, the Gauss-Seidel 
method may converge.

The Python implementation of the Gauss-Seidel method is given as follows:

""" Solve Ax=B with the Gauss-Seidel method """
import numpy as np

def gauss(A, B, n, tol=1e-10):
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    L = np.tril(A)  # Returns the lower triangular matrix of A
    U = A - L  # Decompose A = L + U
    L_inv = np.linalg.inv(L)
    x = np.zeros_like(B)
    
    for i in range(n):        
        Ux = np.dot(U, x)
        x_new = np.dot(L_inv, B - Ux)
        
        if np.allclose(x, x_new, tol):
            break
            
        x = x_new
        
    return x 

Here, the tril function of NumPy returns the lower triangular matrix A from which 
we can find the lower triangular matrix U. Plugging the remaining values into x 
iteratively would lead us to the solution below with some tolerance defined by tol.

Let's consider the same matrix values in the Jacobi method and Cholesky 
decomposition example. We will use a maximum of 100 iterations in our guass 
function to find the values of x  as follows:

A = np.array([[10., -1., 2., 0.],
              [-1., 11., -1., 3.],
              [2., -1., 10., -1.],
              [0.0, 3., -1., 8.]])
B = np.array([6., 25., -11., 15.])
n = 100
x = gauss(A, B, n) 

Let's see if our x values match with those as before:

>>>print "x =", x 

x = [ 1.  2. -1.  1.] 

We solved for the values of x , which are similar to the answers from the Jacobi 
method and Cholesky decomposition.
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Summary
In this chapter, we took a brief look at the use of the CAPM model and APT model in 
finance. In the CAPM model, we visited the efficient frontier with the capital market 
line to determine the optimal portfolio and the market portfolio. Then, we solved 
for the security market line using regression that helped us to determine whether 
an asset is undervalued or overvalued. In the APT model, we explored how various 
factors affect security returns other than using the mean-variance framework. We 
performed a multivariate regression to help us determine the coefficients of these 
factors that led to the valuation of our security price.

In portfolio allocation, portfolio managers are typically mandated by investors to 
achieve a set of objectives while following certain constraints. We can model this 
problem using linear programming. Using the PuLP Python package, we defined a 
maximization or minimization objective function, and added inequality constraints 
to our problems to solve for unknown variables. The three outcomes in linear 
optimization can either be an unbounded solution, only one solution, or no solution 
at all.

Another form of linear optimization is integer programming, where all the variables 
are restricted to be integers instead of fractional values. A special case of an integer 
variable is a binary variable, which can either be 0 or 1, and it is especially useful 
to model decision making given a set of choices. We worked on a simple integer 
programming model containing binary conditions and saw how easy it is to run into 
a pitfall. Careful planning on the design of integer programming models is required 
for them to be useful in decision making.

The portfolio allocation problem may also be represented as a system of linear 
equations with equalities, which can be solved using matrices in the form of Ax B= .  
To find the values of x, we solved for 1A B−  using various types of decomposition 
of the matrix A. The two types of matrix decomposition methods are the direct and 
indirect methods. The direct method performs matrix algebra in a fixed number of 
iterations. They are namely the LU decomposition, Cholesky decomposition, and 
QR decomposition methods. The indirect or iterative method iteratively computes 
the next values of x until a certain tolerance of accuracy is reached. This method 
is particularly useful for computing large matrices, but it also faces the risk of not 
having the solution converge. The indirect methods we have used are the Jacobi 
method and the Gauss-Seidel method.

In the next chapter, we will take a look at nonlinear models and methods of  
solving them.
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Nonlinearity in Finance
In recent years, there has been a growing interest in research on nonlinear 
phenomena in economic and financial theory. With nonlinear serial dependence 
playing a significant role in the returns of many financial time series, this makes 
security valuation and pricing very important, leading to an increase in studies  
of nonlinear modeling of financial products.

Practitioners in the financial industry use nonlinear models to forecast volatility, 
price derivatives, and compute Value at Risk (VAR). Unlike linear models, where 
linear algebra is used to find a solution, nonlinear models do not necessarily infer a 
global optimal solution. Numerical root-finding methods are usually employed to 
converge toward the nearest local optimal solution, which is a root.

In this chapter, we will discuss the following topics to explore some methods that 
will help us extract information from nonlinear models:

•	 Examining the definition of nonlinearity
•	 Discussing the volatility smile in implied volatility modeling
•	 Discussing Markov switching models, threshold models, and smooth 

transition models as nonlinear models
•	 An overview of root-finding to find the optimal point of nonlinear models
•	 Examining the incremental search algorithm, bisection algorithm, Newton's 

algorithm, and secant method in root-finding
•	 Combining root-finding methods with Brent's method
•	 SciPy's implementation of root-finding methods as scalar functions
•	 SciPy's general nonlinear solvers in root-finding
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Nonlinearity modeling
While linear relationships aim to explain observed phenomena in the simplest 
way possible, many complex physical phenomena cannot be explained using such 
models. A nonlinear relationship is defined as follows:

( ) ( ) ( )f a b f a f b+ ≠ +

Even though nonlinear relationships may be complex, to fully understand and model 
them we will take a look at the examples that are applied in the context of finance 
and in time series models.

Examples of nonlinear models
Many nonlinear models have been proposed for academic and applied research to 
explain certain aspects of economic and financial data that are left unexplained by 
linear models. The literature on nonlinearity in finance is simply too broad and deep 
to be adequately explained in this book. In this section, we will just briefly discuss 
some examples of nonlinear models that we may possibly come across for practical 
uses: the implied volatility model, Markov-switching model, threshold model, and 
smooth transition model.

The implied volatility model
Perhaps one of the most widely studied option pricing models is the Black-Scholes-
Merton model, or simply the Black-Scholes model in short. A call (put) option is a 
right, not an obligation, to buy (sell) the underlying security at a particular price 
and at a particular time. The Black-Scholes model helps determine the fair price of 
an option with the assumption that returns of the underlying security are normally 
distributed (N(.)) or that asset prices are log-normally distributed.

The formula takes on the following assumed variables: the strike price (K), time to 
expiry (T), risk-free rate (r), volatility of the underlying returns (σ ), current price of 
the underlying asset (S), and its yield (q). The mathematical formula for a call option 
( ),C S t  is represented as follows:

( ) ( ) ( )1 2, qT rTC S t Se N d Ke N d− −= −
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Here:

( ) ( )2

1

/ / 2ln S K r q T
d

T

σ

σ

+ − +
=

2 1d d Tσ= −

By way of market forces, the price of an option may deviate from the price derived 
from the Black-Scholes formula. In particular, the realized volatility (that is, the 
observed volatility of the underlying returns from historical market prices) could 
differ from the volatility value as implied by the Black-Scholes model, which is 
indicated by σ .

Remember the CAPM model discussed in Chapter 2, The Importance of Linearity 
in Finance. In general, securities that have higher returns exhibit higher risk, as 
indicated by the volatility or standard deviation of returns.

With volatility being such an important factor in security pricing, many volatility 
models have been proposed for studies. One such model is the implied volatility 
modeling of option prices.

Suppose we plot the implied volatility values of an equity option given by the  
Black-Scholes formula with a particular maturity for every strike price available.  
In general, we get a curve commonly known as the volatility smile due to its shape:
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The implied volatility typically is its highest for deep in-the-money (ITM) and  
out-of-the-money (OTM) options driven by heavy speculation and at its lowest  
for at-the-money (ATM) options.

The characteristics of options are explained as follows:
•	 In-the-money options (ITM): A call option is considered ITM 

when its strike price is below the market price of the underlying 
asset. A put option is considered ITM when its strike price is 
above the market price of the underlying asset. ITM options have 
an intrinsic value when exercised.

•	 Out-of-the-money options (OTM): A call option is considered 
OTM when its strike price is above the market price of the 
underlying asset. A put option is considered ITM when its strike 
price is below the market price of the underlying asset. OTM 
options have no intrinsic value when exercised.

•	 At-the-money options (ATM): An option is considered ATM 
when its strike price is the same as the market price of the 
underlying asset. ATM options have no intrinsic value, but may 
still have time value.

From the preceding volatility curve, one of the objectives in implied volatility 
modeling is to seek the lowest implied volatility value possible or, in other words, to 
"find the root". When found, the theoretical price of an ATM option for a particular 
maturity can be deduced and compared against the market prices for potential 
opportunities, such as for studying near ATM options or far OTM options. However, 
since the curve is nonlinear, linear algebra cannot adequately solve for the root.  
We will take a look at a number of root-finding methods in the later sections of  
this chapter.

The Markov regime-switching model
To model nonlinear behavior in economic and financial time series, Markov switching 
models can be used to characterize time series in different states of the world or 
regimes. Examples of such states could be a volatile state as seen in the 2008 global 
economic downturn, or a growth state of a steadily recovering economy. The ability to 
transit between these structures lets the model capture complex dynamic patterns.

The Markov property of stock prices implies that only the present values are relevant 
for predicting the future. Past stock price movements are irrelevant to the way the 
present has emerged.
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Let's take an example of a Markov regime-switching model with 2m =  regimes:

1

2

, 1
, 2
t t

t
t t

x when s
y
x when s

ε
ε

+ =
 + =

tε  is an independent and identically distributed (i.i.d) white noise. White noise is 
a normally distributed random process with a mean of zero. The same model can be 
represented with dummy variables:

( )1 2 1t t t ty x D x D ε= + − +

1 1,t twhereD when s= =

0 2t tor D when s= =

The application of Markov switching models includes representing the real GDP 
growth rate and inflation rate dynamics. These models in turn drive the valuation 
models of interest-rate derivatives. The probability of switching from the previous 
state i  to the current state j  can be written as follows:

[ ]1|t tP s j s i−= =

The threshold autoregressive model
One popular class of nonlinear time series models is the threshold autoregressive 
(TAR) model, which looks very similar to the Markov switching models. Using 
regression methods, simple AR models are arguably the most popular models to 
explain nonlinear behavior. Regimes in the threshold model are determined by past 
d  values of its own time series, relative to a threshold value c. The following is an 
example of a self-exciting TAR (SETAR) model. The SETAR model is self-exciting 
because switching between different regimes depends on the past values of its own 
time series:

1 1

2 2

,
,

t d t t d
t

t d t t d

a b y if y c
y
a b y if y c

ε
ε

− −

− −

+ + ≤
 + + >
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Using dummy variables, the SETAR model can also be represented as follows:

( ) ( )( )1 1 2 2 1t t d t t d t ty a b y D a b y D ε− −= + + + − +

1 ,t t dwhereD when y c−= ≤

0t t dor D when y c−= >

Note that the use of the TAR model may result in sharp transitions between the 
states as controlled by the threshold variable c.

Smooth transition models
Abrupt regime changes in the threshold models appear to be unrealistic against  
real-world dynamics. This problem can be overcome by introducing a smoothly 
changing continuous function from one regime to another. The SETAR model 
becomes a logistic smooth transition threshold autoregressive (LSTAR) model  
with the logistic function ( )1; ,tG y cγ− :

( ) ( )1
1; ,

1 t dt y cG y c
e γγ

−
− − −

=
+

The SETAR model now becomes a LSTAR model, as shown in the following 
equation:

( ) ( )( ) ( ) ( )1 1 1 2 2 11 ; , ; ,t t d t t d t ty a b y G y c a b y G y cγ γ ε− − − −= + − + + +

The parameter γ  controls the smooth transition from one regime to another. For large 
values of γ , the transition is the fastest, as t dy −  approaches the threshold variable c. 
When 0γ = , the LSTAR model is equivalent to a simple AR(1) one-regime model.
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An introduction to root-finding
In the preceding section, we discussed some nonlinear models commonly used 
for studying economics and financial time series. From the model data given in 
continuous time, the intention is therefore to search for the extrema that could 
possibly infer valuable information. The use of numerical methods, such as root-
finding algorithms, can help us find the roots of a continuous function f  such that 
( ) 0f x = , which can either be the maxima or the minima of the function. In general, 

an equation may either contain a number of roots or none at all.

One example of the use of root-finding methods on nonlinear models is the  
Black-Scholes implied volatility modeling discussed earlier. An option trader would 
be interested in deriving implied prices based on the Black-Scholes model and 
comparing them with the market prices. In the next chapter, we will see how we can 
combine a root-finding method with a numerical option pricing procedure to create 
an implied volatility model based on the market prices of a particular option.

Root-finding methods use an iterative routine that requires a start point or the 
estimation of the root. The estimation of the root can either converge toward a 
solution, converge to a root that is not sought, or may not even find a solution at all. 
Thus, it is crucial to find a good approximation to the root.

Not every nonlinear function can be solved using root-finding methods. The following 
figure shows an example of a continuous function where root-finding methods may 
fail to arrive at a solution. There are discontinuities at 0x =  and 2x =  for the y values 
in the range of -20 to 20:

There is no fixed rule as to how a good approximation can be defined. It is 
recommended that you bracket or define the lower and upper search bounds before 
starting the root-finding iterative procedure. We certainly do not want to keep 
searching in the wrong direction endlessly for our root.
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Incremental search
A crude method of solving a nonlinear function is by doing an incremental search. 
Using an arbitrarily starting point a, we can obtain values of ( )f a  for every 
increment of dx. We assume that the values of ( )F a dx+ , ( )2f a dx+ , ( )3f a dx+ … are 
going in the same direction as indicated by their sign. Once the sign changes, a 
solution is deemed as found. Otherwise, the iterative search terminates when it 
crosses the boundary point b.

A pictorial example of the root-finder method for iteration is given in the  
following graph:

An example can be seen from the Python code:

'''
Python code:
Incremental search method
'''
""" An incremental search algorithm """
import numpy as np
 
 
def incremental_search(f, a, b, dx):
    """
    :param f: The function to solve
    :param a: The left boundary x-axis value
    :param b: The right boundary x-axis value
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    :param dx: The incremental value in searching
    :return: The x-axis value of the root,
                number of iterations used
    """
    fa = f(a)    
    c = a + dx 
    fc = f(c)    
    n = 1
 
    while np.sign(fa) == np.sign(fc):
        if a >= b:
            return a - dx, n
        
        a = c
        fa = fc
        c = a + dx
        fc = f(c)
        n += 1
 
    if fa == 0:
        return a, n
    elif fc == 0:
        return c, n
    else:
        return (a + c)/2., n

At every iterative procedure, a will be replaced by c, and c will be incremented by dx 
before the next comparison. Should a root be found, it is plausible that it lies between 
a and c, both inclusive. In the event should the solution not rest at either point, we will 
simply return the average of the two points as the best estimation. The variable n keeps 
track of the number of iterations that underwent the process of finding our root.

We will use the equation that has an analytic solution of 3 22 5y x x= + −  to 
demonstrate and measure our root-finder, where x is bounded between -5 and 5.  
A small dx value of 0.001 is given, which also acts as a precision tool. Smaller values 
of dx produce better precision but also require more search iterations:

>>> """

>>> The keyword 'lambda' creates an anonymous function 

>>> with input argument x

>>> """

>>> y = lambda x: x**3 + 2.0*x**2 - 5. 

>>> root, iterations = incremental_search (y, -5., 5., 0.001)

>>> print "Root is:", root

>>> print "Iterations: ", iterations
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Root is: 1.2415

Iterations:  6242

The incremental search root-finder method is a basic demonstration of the 
fundamental behavior of a root-finding algorithm. The accuracy is at its best when 
defined by dx and consumes an extremely long computational time in the worst 
possible scenario. The higher the accuracy demanded, the longer it takes for the 
solution to converge. For practical reasons, this method is the least preferred of all 
root-finding algorithms, and we will take a look at alternative methods to find the 
roots of our equation, which can give us a better performance.

The bisection method
The bisection method is considered the simplest one-dimensional root-finding 
algorithm. The general interest is to find the value x  of a continuous function f   
such that ( ) 0f x = .

Suppose we know the two points of an interval a and b, where a b< , and that 
( ) 0f a <  and ( ) 0f b >  lie along the continuous function, taking the midpoint of this 

interval as c , where 
2
a bc +

= , the bisection method then evaluates this value as f(c).

Let's illustrate the setup of points along a nonlinear function with the following graph:

Since the value of f(a) is negative and f(b) is positive, the bisection method assumes 
that the root x lies somewhere between a and b and gives ( ) 0f x = .
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If ( ) 0f c =  or is very close to zero by some predetermined error tolerance value, then 
a root is declared as found. If ( ) 0f c < , then we may conclude that a root exists along 
the interval c and b, or interval a and c otherwise.

On the next evaluation, c is replaced as either a or b accordingly. With the new 
interval shortened, the bisection method repeats with the same evaluation to 
determine the next value of c . This process continues, shrinking the width of the 
interval ab until the root is determined as found.

The biggest advantage of using the bisection method is its guarantee to converge 
to an approximation of the root, given a predetermined error tolerance level and 
the maximum number of iterations allowed. It should be noted that the bisection 
method does not require knowledge of the derivative of the unknown function. In 
certain continuous functions, the derivative could be complex or even impossible 
to calculate. This makes the bisection method extremely valuable for working on 
functions that are not smooth.

Because the bisection method does not require derivative information from the 
continuous function, its major drawback is that it takes up more computational 
time in the iterative evaluation as compared to other root-finder methods. Also, 
since the search boundary of the bisection method lies in the intervals a and b, it 
would require a good approximation to ensure that the root falls within this range. 
Otherwise, a wrong solution may be obtained or even none at all. Using large values 
of a  and b might consume more computational time.

The bisection is considered to be stable without the use of an initial guess value for 
convergence to happen. Often, it is used in combination with other methods, such as 
the faster Newton's method, to converge quickly with precision.

Save this file as bisection.py. The Python code for the bisection method is given  
as follows:

""" The bisection method """

def bisection(f, a, b, tol=0.1, maxiter=10):
    """
    :param f: The function to solve
    :param a: The x-axis value where f(a)<0
    :param b: The x-axis value where f(b)>0
    :param tol: The precision of the solution
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    :param maxiter: Maximum number of iterations
    :return: The x-axis value of the root,
                number of iterations used
    """
    c = (a+b)*0.5  # Declare c as the midpoint ab
    n = 1  # Start with 1 iteration
    while n <= maxiter:
        c = (a+b)*0.5
        if f(c) == 0 or abs(a-b)*0.5 < tol:
            # Root is found or is very close
            return c, n

        n += 1
        if f(c) < 0:
            a = c
        else:
            b = c
                
    return c, n 

Let's try out our bisection method:

>>> y = lambda x: x**3 + 2*x**2 - 5

>>> root, iterations = bisection(y, -5, 5, 0.00001, 100)

>>> print "Root is:", root

>>> print "Iterations: ", iterations

Root is: 1.24190330505 

Iterations:  20

Again, we bounded the anonymous function lambda to the variable y with an input 
parameter x and attempted to solve the equation 3 22 5y x x= + −  as before in the 
interval between -5 to 5 to an accuracy of 0.00001 with a maximum iteration of 100.

As we can see, the result from the bisection method gives us better precision in far 
fewer iterations over the incremental search method.
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Newton's method
Newton's method, also known as the Newton-Raphson method, uses an iterative 
procedure to solve for a root using information about the derivative of a function. 
The derivative is treated as a linear problem to be solved. The first-order derivation 
f ′ of the function f  represents the tangent line. The approximation to the next value 
of x , given as 1x , is as follows:

( )
( )1

f x
x x

f x
= −

′

Here, the tangent line intersects the x  axis at 1x , which produces 0y = . This also 
represents the first-order Taylor expansion about 1x  such that that the new point 
1x x x= + ∆  solves the following equation:

( )1 0f x x+ ∆ =

This process is repeated with x  taking the value of 1x  until the maximum number 
of iterations is reached, or the absolute difference between 1x  and x  is within an 
acceptable accuracy level.

An initial guess value is required to compute the values of ( )f x  and ( )f x′ . The  
rate of convergence is quadratic, which is considered to be extremely fast in 
obtaining the solution with high levels of accuracy.

The drawback to Newton's method is that it does not guarantee global convergence 
to the solution. Such a situation arises when the function contains more than one 
root, or when the algorithm arrives at a local extremum and is unable to compute 
the next step. As this method requires knowledge of the derivative of its input 
function, it is required that the input function be differentiable. However, in certain 
circumstances, it is impossible for the derivative of a function to be known, or 
otherwise be mathematically easy to compute.
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A graphical representation of Newton's method is shown in the following screenshot. 
0x  is the initial x value. The derivative of ( )0f x  is evaluated, which is a tangent line 

crossing the x  axis at 1x . The iteration is repeated, evaluating the derivative at points 
1x , 2x , 3x , and so on.

The implementation of Newton's method in Python is as follows:

""" The Newton-Raphson method """

def newton(f, df, x, tol=0.001, maxiter=100):
    """
    :param f: The function to solve
    :param df: The derivative function of f
    :param x: Initial guess value of x
    :param tol: The precision of the solution
    :param maxiter: Maximum number of iterations
    :return: The x-axis value of the root,
                number of iterations used
    """
    n = 1
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    while n <= maxiter:
        x1 = x - f(x)/df(x)
        if abs(x1 - x) < tol:  # Root is very close
            return x1, n
        else:
            x = x1
            n += 1

    return None, n 

We will use the same function used in the bisection example and take a look at the 
results from Newton's method:

>>> y = lambda x: x**3 + 2*x**2 - 5

>>> dy = lambda x: 3*x**2 + 4*x

>>> root, iterations = newton(y, dy, 5.0, 0.00001, 100)

>>> print "Root is:", root

>>> print "Iterations:", iterations

Root is: 1.24189656303 

Iterations: 7 

Beware of division by zero exceptions! Using values such as 5.0, instead 
of 5, lets Python recognize the variable as a float, avoids the problem of 
treating variables as integers in calculations, and gives us better precision.

With Newton's method, we obtained a really close solution with less iteration over 
the bisection method.

The secant method
The secant method uses secant lines to find the root. A secant line is a straight line 
that intersects two points of a curve. In the secant method, a line is drawn between 
two points on the continuous function such that it extends and intersects the x axis. 
This method can be thought of as a Quasi-Newton method. By successively drawing 
such secant lines, the root of the function can be approximated.
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The secant method is graphically represented in the following screenshot. An initial 
guess of the two x axis values a  and b is required to find ( )f a  and ( )f b . A secant 
line y is drawn from ( )f b  to ( )f a  and intersects at point c on the x axis such that:

( ) ( ) ( ) ( )f b f a
y c b f b

b a
−

= − +
−

The solution to c is therefore:

( ) ( ) ( )
b ac b f b

f b f a
−

= −
−

On the next iteration, a and b will take on the values of b and c respectively. The 
method repeats itself, drawing secant lines for the x axis values of a and b, b and c, c 
and d , and so on. The solution terminates when the maximum number of iterations 
has been reached or the difference between b and c has reached a prespecified 
tolerance level, as shown in the following graph:
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The rate of convergence of the secant method is considered to be superlinear. Its secant 
method converges much faster than the bisection method and slower than Newton's 
method. In Newton's method, the number of floating-point operations takes up twice 
as much time as the secant method in the computation of both its function and its 
derivative on every iteration. Since the secant method requires only computation  
of its function at every step, it can be considered faster in absolute time.

It is required that the initial guess values of the secant method be close to the root, 
otherwise it has no guarantee of converging to the solution.

The Python code for the secant method is given as follows:

""" The secant root-finding method """

def secant(f, a, b, tol=0.001, maxiter=100):
    """
    :param f: The function to solve
    :param a: Initial x-axis guess value
    :param b: Initial x-axis guess value, where b>a
    :param tol: The precision of the solution
    :param maxiter: Maximum number of iterations
    :return: The x-axis value of the root,
                number of iterations used
    """
    n = 1
    while n <= maxiter:
        c = b - f(b)*((b-a)/(f(b)-f(a)))
        if abs(c-b) < tol:
            return c, n

        a = b
        b = c
        n += 1

    return None, n
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Again, we will reuse the same nonlinear function and return the results from the 
secant method:

>>> y = lambda x: x**3 + 2*x**2 - 5

>>> root, iterations = secant(y, -5.0, 5.0, 0.00001, 100)

>>> print "Root is:", root

>>> print "Iterations:", iterations

Root is: 1.24189656226 

Iterations: 14

Though all of the preceding root-finding methods gave very close solutions, the 
secant method performs with fewer iterations compared to the bisection method,  
but with more than Newton's method.

Combining root-finding methods
It is perfectly possible to write your own root-finding algorithms using a 
combination of the previously mentioned root-finding methods. For example, you 
may use the following implementation in the following order:

1.	 Use the faster secant method to converge the problem to a prespecified error 
tolerance value or a maximum number of iterations.

2.	 Once a prespecified tolerance level is reached, switch to using the bisection 
method to converge to the root by halving the search interval with each 
iteration until the root is found.

Brent's method or the Wijngaarden-Dekker-Brent method combines the bisection 
root-finding method, secant method, and inverse quadratic interpolation. The 
algorithm attempts to use either the secant method or inverse quadratic interpolation 
whenever possible, and uses the bisection method where necessary.

Brent's method can also be found in the scipy.optimize.brentq function  
of SciPy.

SciPy implementations
Before starting on writing your root-finding algorithm to solve nonlinear or even 
linear problems, take a look at the documentation of the scipy.optimize methods. 
SciPy contains a collection of scientific computing functions as an extension 
of Python. Chances are that these open source algorithms might fit into your 
applications off-the-shelf.
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Root-finding scalar functions
Some root-finding functions that can be found in the scipy.optimize modules 
are bisect, newton, brentq, and ridder. Let's set up the examples that we have 
discussed using the implementations by SciPy:

"""
Documentation at
http://docs.scipy.org/doc/scipy/reference/optimize.html
"""
import scipy.optimize as optimize

y = lambda x: x**3 + 2.*x**2 - 5.
dy = lambda x: 3.*x**2 + 4.*x

# Call method: bisect(f, a, b[, args, xtol, rtol, maxiter, ...])
print "Bisection method: %s" \
      % optimize.bisect(y, -5., 5., xtol=0.00001)

# Call method: newton(func, x0[, fprime, args, tol, ...])
print "Newton's method: %s" \
      % optimize.newton(y, 5., fprime=dy)
# When fprime=None, then the secant method is used.
print "Secant method: %s" \
      % optimize.newton(y, 5.)

# Call method: brentq(f, a, b[, args, xtol, rtol, maxiter, ...])
print "Brent's method: %s" \
      % optimize.brentq(y, -5., 5.) 

When we run the preceding code, the following output is generated:

Bisection method: 1.24190330505 
Newton's method: 1.24189656303 
Secant method: 1.24189656303 
Brent's method: 1.24189656303

We can see that the SciPy implementation gives us somewhat very close answers as 
our derived ones.
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It should be noted that SciPy has a set of well-defined conditions for every 
implementation. For example, the function call of the bisection routine is given  
as follows:

scipy.optimize.bisect(f, a, b, args=(), xtol=1e-12,  
rtol=4.4408920985006262e-16, maxiter=100, full_output=False,  
disp=True)

The function will strictly evaluate the function f to return a zero of the function. ( )f a  
and ( )f b  cannot have the same signs. In certain scenarios, it is difficult to fulfill these 
constraints. For example, in solving for nonlinear implied volatility models, volatility 
values cannot be negative. In active markets, finding a root or a zero of the volatility 
function is almost impossible without modifying the underlying implementation. 
In such cases, implementing our own root-finding methods might perhaps give us 
more authority over how our application should behave.

General nonlinear solvers
The scipy.optimize module also contains multidimensional general solvers that 
we can harness to our advantage. The root and fsolve functions are some examples 
with the following function properties:

•	 root(fun, x0[, args, method, jac, tol, ...]): This finds a root of a 
vector function

•	 fsolve(func, x0[, args, fprime, ...]): This finds the roots of  
a function

The outputs are returned as a dictionary object. Using our example again as inputs  
to these functions, we will get the following output:

>>> import scipy.optimize as optimize

>>> y = lambda x: x**3 + 2.*x**2 - 5.

>>> dy = lambda x: 3.*x**2 + 4.*x

>>> print optimize.fsolve(y, 5., fprime=dy)

[ 1.24189656]
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>>> print optimize.root(y, 5.)

 status: 1

 success: True

     qtf: array([ -3.73605502e-09])

    nfev: 12

       r: array([-9.59451815])

     fun: array([  3.55271368e-15])

       x: array([ 1.24189656])

 message: 'The solution converged.'

    fjac: array([[-1.]]) 

Using an initial guess value of 5, our solution converged to the root at 1.24189656, 
which is pretty close to the answers we had so far. What happens when we choose  
a value on the other side of the graph? Let's use an initial guess value of -5:

>>> print optimize.fsolve(y, -5., fprime=dy)

[-1.33306553]

>>> print optimize.root(y, -5.)

  status: 5

 success: False

     qtf: array([ 3.81481521])

    nfev: 28

       r: array([-0.00461503])

     fun: array([-3.81481496])

       x: array([-1.33306551])

 message: 'The iteration is not making good progress, as measured by  
the \n  improvement from the last ten iterations.'

    fjac: array([[-1.]])

As seen from the display output, the algorithms did not converge and return a 
root that is a little further away from our previous answers. If we take a look at the 
equation on a graph, there are a number of points along the curve that lie very close 
to the root. A root-finder would be needed to obtain the desired level of accuracy, 
while solvers attempt to solve for the nearest answer in the fastest time.
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Summary
In this chapter, we briefly discussed the persistence of nonlinearity in economics  
and finance. We looked at some nonlinear models that are commonly used in finance 
to explain certain aspects of data left unexplained by linear models: the Black-Scholes 
implied volatility model, Markov switching model, threshold model, and smooth 
transition models.

In Black-Scholes implied volatility modeling, we discussed the volatility smile 
that was made up of implied volatilities derived via the Black-Scholes model from 
the market prices of call or put options for a particular maturity. You may be 
interested enough to seek the lowest implied volatility value possible, which can be 
useful for inferring theoretical prices and comparing against the market prices for 
potential opportunities. However, since the curve is nonlinear, linear algebra cannot 
adequately solve for the optimal point. To do so, we will require the use of root-
finding methods.

Root-finding methods attempt to find the root of a function or its zero. We discussed 
common root-finding methods: the bisection method, Newton's method, and secant 
method. Using a combination of root-finding algorithms may help us to seek roots of 
complex functions faster. One such example is Brent's method.

We explored functionalities in the scipy.optimize module that contains these  
root-finding methods, albeit with constraints. One of these constraints requires 
that the two boundary input values be evaluated with a pair of a negative value 
and positive value for the solution to converge successfully. In implied volatility 
modeling, this evaluation is almost impossible since volatilities do not have negative 
values. Implementing our own root-finding methods might perhaps give us more 
authority over how our application should perform.

Using general solvers is another way of finding roots. They may also converge to  
our solution more quickly, but such a convergence is not guaranteed by the initial 
given values.

Nonlinear modeling and optimization are inherently a complex task, and there is 
no universal solution or a sure way to reach a conclusion. This chapter serves to 
introduce nonlinearity studies for finance in general.

In the next chapter, we will take a look at numerical methods commonly used for 
options pricing. By pairing a numerical procedure with a root-finding algorithm, 
we will learn how to build an implied volatility model with the market prices of an 
equity option.
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Numerical Procedures
A derivative is a contract whose payoff depends on the value of some underlying 
asset. In cases where closed-form derivative pricing may be complex or even 
impossible, numerical procedures excel. A numerical procedure is the use of iterative 
computational methods in attempting to converge to a solution. One such basic 
implementation is a binomial tree. In a binomial tree, a node represents the state of 
an asset at a certain point of time associated with a price. Each node leads to two 
other nodes in the next time step. Similarly, in a trinomial tree, each node leads to 
three other nodes in the next time step. However, as the number of nodes or the time 
steps of trees increase, so do the computational resources consumed. Lattice pricing 
attempts to solve this problem by storing only the new information at each time step, 
while reusing values where possible.

In finite difference pricing, the nodes of the tree can also be represented as a grid. 
The terminal values on the grid consist of terminal conditions, while the edges of 
the grid represent boundary conditions in asset pricing. We will discuss the explicit 
method, implicit method, and the Crank-Nicolson method of the finite differences 
schemes to determine the price of an asset.

Although vanilla options and certain exotics such as European barrier options and 
lookback options can be found to have a closed-form solution, other exotic products 
such as Asian options do not contain a closed-form solution. In these cases, the 
pricing of options can be used with numerical procedures.

In this chapter, we will cover the following topics:

•	 Pricing European and American options using a binomial tree
•	 Using a Cox-Ross-Rubinstein (CRR) binomial tree
•	 Pricing options using a Leisen-Reimer (LR) tree
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•	 Pricing options using a trinomial tree
•	 Pricing options using a binomial and trinomial lattice
•	 Deriving Greeks from a tree for free
•	 Finite differences with the explicit, implicit, and Crank-Nicolson method
•	 Implied volatility modelling using a LR tree and the bisection method

Introduction to options
An option is a derivative of an asset that gives an owner the right but not the 
obligation to transact the underlying asset at a certain date for a certain price,  
known as the maturity date and strike price respectively.

A call option gives the buyer the right to buy an asset by a certain date for a certain 
price. A seller or writer of a call option is obligated to sell the underlying security 
to the buyer at the agreed price, should the buyer exercise his/her rights on the 
agreed date. A put option gives the buyer the right to sell the underlying asset by a 
certain date for a certain price. A seller or writer of a put option is obligated to buy 
the underlying security from the buyer at the agreed price, should the buyer exercise 
his/her rights on the agreed date.

The most common options available are the European options and American 
options. Other exotic options include Bermudan options and Asian options. This 
chapter will deal mainly with European and American options. An European option 
can only be exercised on the maturity date. An American option may be exercised at 
any time throughout the lifetime of the option.

Binomial trees in options pricing
In the binomial options pricing model, the underlying security at one time period, 
represented as a node with a given price, is assumed to traverse to two other nodes 
in the next time step, representing an up state and a down state. Since options are 
derivatives of the underlying asset, the binomial pricing model tracks the underlying 
conditions on a discrete-time basis. Binomial option pricing can be used to value 
European options, American options, as well as Bermudan options.
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The initial value of the root node is the spot price 0S  of the underlying security 
with a given probability of returns up  should its value increase, and a probability 
of loss dp  should its value decrease. Based on these probabilities, the expected 
values of the security are calculated for each state of price increase or decrease for 
every time step. The terminal nodes represent every value of the expected security 
prices for every combination of up states and down states. We can then calculate 
the value of the option at every node, traverse the tree by risk-neutral expectations, 
and after discounting from the forward interest rates, we can derive the value of 
the call or put option.

Pricing European options
Consider a two-step binomial tree. A non-dividend paying stock price starts at $50, 
and in each of the two time steps, the stock may go up by 20 percent or go down by 
20 percent. We suppose that the risk-free rate is 5 percent per annum and the time to 
maturity T  is 0.5 years. We would like to find the value of an European put option 
with a strike price K  of $52. The following figure shows the pricing of the stock 
using a binomial tree:
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Here, the nodes are calculated as follows:

0, 50Spot Price S =

, 1.2uProbability of up state p =

, 0.8dProbability of down state p =

( )50 1.2 60uS = =

( )50 0.8 80dS = =

( )250 1.2 72uuS = =

( )( )50 1.2 0.8 48uu udS S= = =

( )250 0.8 32ddS = =

At the ultimate nodes, which hold the values of the underlying stock at maturity,  
the payoff from exercising an European call option is given as follows:

( )max 0,t tC S K= −

In the case of an European put option, the payoff is as follows:

( )max 0,t tp K S= −

From the option payoff values, we can then traverse the binomial tree backward to 
the current time and, after discounting from the risk-free rate, we will obtain our 
present value of the option. Traversing the tree backward takes into account the  
risk-neutral probabilities of the option's up states and down states.
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We may assume that investors are indifferent to risk and that expected returns on 
all assets are equal. In the case of investing in stocks, by risk-neutral probability, 
the payoff from holding the stock, taking into account the up and down state 
possibilities, would be equal to the continuously compounded risk-free rate expected 
in the next time step, as follows:

( )1rte qu q d= + −

The risk-neutral probability q  of investing in the stock can be rewritten as follows:

rte dq
u d
−

=
−

Are these formulas relevant to stocks? What about 
futures?
Unlike investing in stocks, investors do not have to make an upfront payment to take 
a position in a futures contract. In a risk-neutral sense, the expected growth rate from 
holding a futures contract is zero and the payoff can be written as follows:

( )1 1qu q d= + −

The risk-neutral probability q  of investing in futures can be rewritten as follows:

1 dq
u d
−

=
−
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The risk-neutral probability q  of the stock given in the preceding example is 
calculated as 0.62817, and the payoff of the put option is given as follows:

Writing the StockOption class
Before going further in implementing the various pricing models that we are about 
to discuss, let's create a StockOption class to store and calculate the common 
attributes of the stock option that will be reused throughout this chapter. You can 
save the following code to a file named StockOption.py:

""" Store common attributes of a stock option """
import math

class StockOption(object):

    def __init__(self, S0, K, r, T, N, params):
        self.S0 = S0
        self.K = K
        self.r = r
        self.T = T
        self.N = max(1, N) # Ensure N have at least 1 time step
        self.STs = None  # Declare the stock prices tree
        
        """ Optional parameters used by derived classes """
        self.pu = params.get("pu", 0)  # Probability of up state
        self.pd = params.get("pd", 0)  # Probability of down state
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        self.div = params.get("div", 0)  # Dividend yield
        self.sigma = params.get("sigma", 0)  # Volatility
        self.is_call = params.get("is_call", True)  # Call or put
        self.is_european = params.get("is_eu", True)  # Eu or Am

        """ Computed values """
        self.dt = T/float(N)  # Single time step, in years
        self.df = math.exp(
            -(r-self.div) * self.dt)  # Discount factor

The current underlying price, strike price, risk-free rate, time to maturity, and 
number of time steps are compulsory common attributes for pricing options. 
The params variable is a dictionary object that accepts the required additional 
information pertaining to the model being used. From all of this information, the 
delta of the time step dt and the discount factor df are computed and can be reused 
throughout the pricing implementation.

Writing the BinomialEuropeanOption class
The Python implementation of the binomial option pricing model of an European 
option is given as the BinomialEuropeanOption class, which inherits the common 
attributes of the option from the StockOption class. 

The price method of the BinomialEuropeanOption class is a public method that 
is the entry point for all the instances of this class. It calls the _setup_parameters_ 
method to set up the required model parameters, and then calls the _initialize_
stock_price_tree_ method to simulate the expected values of the stock prices for 
the period up till T.

Finally, the __begin_tree_traversal__ private method is called to initialize the 
payoff array and store the discounted payoff values, as it traverses the binomial 
tree back to the present time. The payoff tree nodes are returned as a NumPy array 
object, where the present value of the European option is found at the initial node.

Method names starting with double underlines "__" are private 
methods and can only be accessed within the same class. Method 
names starting with a single underline "_" are a protected method and 
may be overwritten by child classes. Method names not starting with 
an underline are public functions and may be accessed from any object.

Save this code to a file named BinomialEuropeanOption.py:

""" Price a European option by the binomial tree model """
from StockOption import StockOption
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import math
import numpy as np

class BinomialEuropeanOption(StockOption):

    def __setup_parameters__(self):
        """ Required calculations for the model """
        self.M = self.N + 1  # Number of terminal nodes of tree
        self.u = 1 + self.pu  # Expected value in the up state
        self.d = 1 - self.pd  # Expected value in the down state
        self.qu = (math.exp((self.r-self.div)*self.dt) -
                   self.d) / (self.u-self.d)
        self.qd = 1-self.qu

    def _initialize_stock_price_tree_(self):
        # Initialize terminal price nodes to zeros
        self.STs = np.zeros(self.M)

        # Calculate expected stock prices for each node
        for i in range(self.M):
            self.STs[i] = self.S0*(self.u**(self.N-i))*(self.d**i)

    def _initialize_payoffs_tree_(self):
        # Get payoffs when the option expires at terminal nodes
        payoffs = np.maximum(
            0, (self.STs-self.K) if self.is_call
            else(self.K-self.STs))

        return payoffs

    def _traverse_tree_(self, payoffs):
        # Starting from the time the option expires, traverse
        # backwards and calculate discounted payoffs at each node
        for i in range(self.N):
            payoffs = (payoffs[:-1] * self.qu +
                       payoffs[1:] * self.qd) * self.df

        return payoffs

    def __begin_tree_traversal__(self):
        payoffs = self._initialize_payoffs_tree_()
        return self._traverse_tree_(payoffs)
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    def price(self):
        """ The pricing implementation """
        self.__setup_parameters__()
        self._initialize_stock_price_tree_()
        payoffs = self.__begin_tree_traversal__()

     return payoffs[0]  # Option value converges to first node

Let's take the values from the two-step binomial tree example discussed earlier to 
price the European put option:

>>> from StockOption import StockOption

>>> from BinomialEuropeanOption import BinomialEuropeanOption

>>> eu_option = BinomialEuropeanOption

...     50, 50, 0.05, 0.5, 2,

...     {"pu": 0.2, "pd": 0.2, "is_call": False})

>>> print option.price()

4.82565175126

Using the binomial option pricing model gives us a present value of $4.826 for the 
European put option.

Pricing American options with the 
BinomialTreeOption class
Unlike European options that can only be exercised at maturity, American options 
can be exercised at any time during their lifetime.

To implement the pricing of American options in Python, we do the same with the 
BinomialEuropeanOption class and create a class named BinomialTreeOption. 
The parameters used in the _setup_parameters_ method remain the same with the 
removal of an unused M parameter. The various methods used in American options 
are as follows:

•	 _initialize_stock_price_tree_: This method uses a two-dimensional 
NumPy array to store the expected returns of the stock prices for all time 
steps. This information is used to calculate the payoff values from exercising 
the option at each period.

•	 _initialize_payoffs_tree_: This method creates the payoff tree as a 
two-dimensional NumPy array, starting with the intrinsic values of the 
option at maturity.
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•	 __check_early_exercise__: This method is a private method that returns 
the maximum payoff values between exercising the American option early 
and not exercising the option at all.

•	 _traverse_tree_: This method now includes the invocation of the  
__check_early_exercise__ method to check whether it is optimal  
to exercise an American option early at every time step.

Implementation of the __begin_tree_traversal__ and the price methods remains 
the same.

The BinomialTreeOption class can now price both European and American 
options when the is_eu key of the params dictionary object is set to true or 
false respectively, when creating an instance of the class. Save the file as 
BinomialAmericanOption.py with the following code:

""" Price a European or American option by the binomial tree """
from StockOption import StockOption
import math
import numpy as np

class BinomialTreeOption(StockOption):

    def _setup_parameters_(self):
        self.u = 1 + self.pu  # Expected value in the up state
        self.d = 1 - self.pd  # Expected value in the down state
        self.qu = (math.exp((self.r-self.div)*self.dt) -
                   self.d)/(self.u-self.d)
        self.qd = 1-self.qu

    def _initialize_stock_price_tree_(self):
        # Initialize a 2D tree at T=0
        self.STs = [np.array([self.S0])]

        # Simulate the possible stock prices path
        for i in range(self.N):
            prev_branches = self.STs[-1]
            st = np.concatenate((prev_branches*self.u,
                                 [prev_branches[-1]*self.d]))
            self.STs.append(st)  # Add nodes at each time step

    def _initialize_payoffs_tree_(self):
        # The payoffs when option expires
        return np.maximum(
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            0, (self.STs[self.N]-self.K) if self.is_call
            else (self.K-self.STs[self.N]))

    def __check_early_exercise__(self, payoffs, node):
        early_ex_payoff = \
            (self.STs[node] - self.K) if self.is_call \
            else (self.K - self.STs[node])

        return np.maximum(payoffs, early_ex_payoff)

    def _traverse_tree_(self, payoffs):
        for i in reversed(range(self.N)):
            # The payoffs from NOT exercising the option
            payoffs = (payoffs[:-1] * self.qu +
                       payoffs[1:] * self.qd) * self.df

            # Payoffs from exercising, for American options
            if not self.is_european:
                payoffs = self.__check_early_exercise__(payoffs, 
                                                        i)
        return payoffs

    def __begin_tree_traversal__(self):
        payoffs = self._initialize_payoffs_tree_()
        return self._traverse_tree_(payoffs)

    def price(self):
        self._setup_parameters_()
        self._initialize_stock_price_tree_()
        payoffs = self.__begin_tree_traversal__()

        return payoffs[0]

Taking the same variables in the European put option pricing example, we can create 
an instance of the BinomialTreeOption class and price this American option:

>>> from BinomialAmericanOption import BinomialTreeOption

>>> am_option = BinomialTreeOption(

...     50, 50, 0.05, 0.5, 2,

...     {"pu": 0.2, "pd": 0.2, "is_call": False, "is_eu": False})

>>> print am_option.price()

5.11306008282
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The American put option is priced at $5.113. Since American options can be exercised 
at any time and European options can only be exercised at maturity, this added 
flexibility of American options increases their value over European options in certain 
circumstances.

For American call options on an underlying asset that does not pay dividends, there 
might not be an extra value over its European call option counterpart. Because of 
the time value of money, it costs more to exercise the American call option today 
before the expiration at the strike price than at a future time with the same strike 
price. For an in-the-money American call option, exercising the option early loses the 
benefit of protection against adverse price movement below the strike price as well 
as its intrinsic time value. With no entitlement of dividend payments, there are no 
incentives to exercise American call options early.

The Cox-Ross-Rubinstein model
In the preceding examples, we assumed that the underlying stock price would 
increase by 20 percent and decrease by 20 percent in its respective up state u and 
down state d. The Cox-Ross-Rubinstein (CRR) model proposes that, over a short 
period of time in the risk-neutral world, the binomial model matches the mean 
and variance of the underlying stock. The volatility of the underlying stock, or the 
standard deviation of returns of the stock, is taken into account as follows:

tu eσ ∆=

1 td e
u

σ− ∆= =

Writing the BinomialCRROption class
The implementation of the binomial CRR model remains the same as the binomial 
tree discussed earlier with the exception of the model parameters u and d.

In Python, we will create a class named BinomialCRROption and simply inherit  
the BinomialTreeOption class. Then, all that we need to do is to override the  
_setup_parameters_ method with values from the CRR model.

Instances of the BinomialCRROption object will invoke the price method, which will 
call all other methods, except the overwritten _setup_parameters_ method, of the 
parent BinomialTreeOption class.



Chapter 4

[ 83 ]

Save the following code to a file named BinomialCRROption.py:

""" Price an option by the binomial CRR model """
from BinomialTreeOption import BinomialTreeOption
import math

class BinomialCRROption(BinomialTreeOption):

    def _setup_parameters_(self):
        self.u = math.exp(self.sigma * math.sqrt(self.dt))
        self.d = 1./self.u
        self.qu = (math.exp((self.r-self.div)*self.dt) -
                   self.d)/(self.u-self.d)
        self.qd = 1-self.qu

Consider again the two-step binomial tree. The non-dividend paying stock has a 
current price of $50 and a volatility of 30 percent. Suppose that the risk-free rate is 5 
percent per annum and the time to maturity T  is 0.5 years. We would like to find the 
value of an European put option with a strike price K  of $50 by the CRR model:

>>> from BinomialCRROption import BinomialTreeOption

>>> eu_option = BinomialCRROption(

...     50, 50, 0.05, 0.5, 2,

...     {"sigma": 0.3, "is_call": False})

>>> print "European put: %s" % eu_option.price()

European put: 3.1051473413 

>>> am_option = BinomialCRROption(

...    50, 50, 0.05, 0.5, 2,

...    {"sigma": 0.3, "is_call": False, "is_eu": False})

>>> print "American put: %s" % am_option.price()

American put: 3.4091814964

Using a Leisen-Reimer tree
In the binomial models discussed earlier, we made several assumptions on the 
probability of up and down states as well as the resulting risk-neutral probabilities. 
Besides the binomial model with CRR parameters discussed, other forms of 
parameterization discussed widely in mathematical finance include the Jarrow-Rudd 
parameterization, Tian parameterization, and Leisen-Reimer parameterization. Let's 
take a look at the Leisen-Reimer model in detail.
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Dr. Dietmar Leisen and Matthias Reimer proposed a binomial tree model with 
the purpose of approximating to the Black-Scholes solution as the number of 
steps increases. It is known as the Leisen-Reimer (LR) tree, and the nodes do not 
recombine at every alternate step. It uses an inversion formula to achieve better 
accuracy during tree transversal.

A detailed explanation of the formulas is given in the paper Binomial Models For 
Option Valuation - Examining And Improving Convergence, March 1995, which is 
available at http://papers.ssrn.com/sol3/papers.cfm?abstract_id=5976.

We will be using method two of the Peizer and Pratt Inversion function f with the 
following characteristic parameters:
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The parameter 0S  is the current stock price, K is the strike price of the option, σ
is the annualized volatility of the underlying stock, T  is the time to maturity of the 
option, r is the annualized risk-free rate, y is the dividend yield, and t∆  is the time 
interval between each tree step.

Writing the BinomialLROption class
The Python implementation of the Leisen-Reimer tree is given in the following 
BinomialLROption class. Similar to the BinomialCRROption class, we can inherit the 
BinomialTreeOption class and override the variables in the _setup_parameters_ 
method with those of the LR tree model:

""" Price an option by the Leisen-Reimer tree """
from BinomialTreeOption import BinomialTreeOption
import math

class BinomialLROption(BinomialTreeOption):

    def _setup_parameters_(self):
        odd_N = self.N if (self.N%2 == 1) else (self.N+1)
        d1 = (math.log(self.S0/self.K) +
              ((self.r-self.div) +
               (self.sigma**2)/2.) *
              self.T) / (self.sigma * math.sqrt(self.T))
        d2 = (math.log(self.S0/self.K) +
              ((self.r-self.div) -
               (self.sigma**2)/2.) *
              self.T) / (self.sigma * math.sqrt(self.T))
        pp_2_inversion = \
            lambda z, n: \
            .5 + math.copysign(1, z) * \
            math.sqrt(.25 - .25 * math.exp(
                -((z/(n+1./3.+.1/(n+1)))**2.)*(n+1./6.)))
        pbar = pp_2_inversion(d1, odd_N)

        self.p = pp_2_inversion(d2, odd_N)
        self.u = 1/self.df * pbar/self.p
        self.d = (1/self.df - self.p*self.u)/(1-self.p)
        self.qu = self.p
        self.qd = 1-self.p
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Using the same examples as before, we can price the options using an LR tree:

>>> from BinomialLROption import BinomialLROption

>>> eu_option = BinomialLROption(

...     50, 50, 0.05, 0.5, 3,

...     {"sigma": 0.3, "is_call": False})

>>> print "European put: %s" % eu_option.price()

European put: 3.56742999918

>>> am_option = BinomialLROption(

...     50, 50, 0.05, 0.5, 3,

...     {"sigma": 0.3, "is_call": False, "is_eu": False})

>>> print "American put: %s" % am_option.price()

American put: 3.66817910413

The Greeks for free
In the binomial tree pricing models that we have covered so far, we traversed up 
and down the tree at each point in time to determine the node values. From the 
information at each node, we can reuse these computed values easily. One such  
use is the computation of Greeks.

The Greeks measures the sensitivities of the price of derivatives such as options with 
respect to changes in parameters of its underlying asset, often represented by Greek 
letters. In mathematical finance, the common names associated with Greeks include: 
alpha, beta, delta, gamma, vega, theta, and rho.

Two particularly useful Greeks for options are delta and gamma. Delta measures 
the sensitivity of the option price with respect to the underlying asset price. Gamma 
measures the rate of change in delta with respect to the underlying price.

As shown in the following figure, an additional layer of nodes is added around our 
original two-step tree to make it a four-step tree, which extends two steps backward 
in time. Even with additional terminal payoff nodes, all nodes will contain the same 
information as our original two-step tree. Our option value of interest is now located 
in the middle of the tree at t=0:
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Notice that at t=0 there exists two additional nodes' worth of information that we can 
use to compute the delta formula as follows:

0 0/ /
up downv v

delta
S u d S d u

−
=

−

The delta formula states that the difference in the option prices in the up and down 
state is represented as a unit of the difference between the respective stock prices at 
time t=0.

Conversely, the gamma formula can be computed as follows:
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The gamma formula states that the difference of deltas between the option prices in 
the up node and the down node against the initial node value are computed as a unit 
of the differences in price of the stock at the respective states.
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Writing the BinomialLRWithGreeks class
To illustrate the computation of Greeks with the LR tree, let's create a new class 
named BinomialLRWithGreeks that inherits the BinomialLROption class with  
our own implementation of the price method.

In the price method, we will start by calling the _setup_parameters_ method of 
the parent class to initialize all variables required by the LR tree. However, this time 
we will also call the __new_stock_price_tree__ method, which is a new private 
method specially used to create an extra layer of nodes around the original tree.

The __begin_tree_traversal__ method is called to perform the usual LR tree 
implementation in the parent class. The returned NumPy array object now contains 
the information on the three nodes at t=0, where the middle node is the option price. 
The payoffs in the up and down states at t=0 are in the first and last index of the 
array respectively. 

With this information, the price method computes and returns the option price,  
and the delta and the gamma values together:

""" Compute option price, delta and gamma by the LR tree """
from BinomialLROption import BinomialLROption
import numpy as np

class BinomialLRWithGreeks(BinomialLROption):

    def __new_stock_price_tree__(self):
        """
        Create additional layer of nodes to our
        original stock price tree
        """
        self.STs = [np.array([self.S0*self.u/self.d,
                              self.S0,
                              self.S0*self.d/self.u])]

        for i in range(self.N):
            prev_branches = self.STs[-1]
            st = np.concatenate((prev_branches * self.u,
                                 [prev_branches[-1] * self.d]))
            self.STs.append(st)

    def price(self):
        self._setup_parameters_()
        self.__new_stock_price_tree__()
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        payoffs = self.__begin_tree_traversal__()

        """ Option value is now in the middle node at t=0"""
        option_value = payoffs[len(payoffs)/2]

        payoff_up = payoffs[0]
        payoff_down = payoffs[-1]
        S_up = self.STs[0][0]
        S_down = self.STs[0][-1]
        dS_up = S_up - self.S0
        dS_down = self.S0 - S_down

        """ Get delta value """
        dS = S_up - S_down
        dV = payoff_up - payoff_down
        delta = dV/dS

        """ Get gamma value """
        gamma = ((payoff_up-option_value)/dS_up -
                 (option_value-payoff_down)/dS_down) / \
                ((self.S0+S_up)/2. - (self.S0+S_down)/2.)

        return option_value, delta, gamma

Using the same example from the LR tree, we can compute the option values and 
Greeks for an European call and put option with 300 time steps:

>>> from BinomialLRWithGreeks import BinomialLRWithGreeks

>>> eu_call = BinomialLRWithGreeks(

...     50, 50, 0.05, 0.5, 300, {"sigma": 0.3, "is_call": True})

>>> results = eu_call.price()

>>> print "European call values"

>>> print "Price: %s\nDelta: %s\nGamma: %s" % results

European call values 

Price: 4.80386465741 

Delta: 0.588801522182 

Gamma: 0.0367367823884   

>>> eu_put = BinomialLRWithGreeks(

...     50, 50, 0.05, 0.5, 300, {"sigma":0.3, "is_call": False})

>>> results = eu_put.price()

>>> print "European put values"



Numerical Procedures

[ 90 ]

>>> print "Price: %s\nDelta: %s\nGamma: %s" % results

European put values 

Price: 3.56936025883 

Delta: -0.411198477818 

Gamma: 0.0367367823884

As shown from the price method and results, we managed to obtain additional 
information on Greeks from the modified binomial tree without any extra overhead 
in computational complexity.

Trinomial trees in options pricing
In the binomial tree, each node leads to two other nodes in the next time step. 
Similarly in a trinomial tree, each node leads to three other nodes in the next time 
step. Besides having up and down states, the middle node of the trinomial tree 
indicates no change in state. When extended over more than two time steps, the 
trinomial tree can be thought of as a recombining tree, where the middle nodes 
always retain the same values as the previous time step.

Let's consider the Boyle trinomial tree, where the tree is calibrated such that the 
probability of up, down, and flat movements, u, d , and m  with risk-neutral 
probabilities uq , dq , and mq  are as follows:
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We can see that 2 2t tud e eσ σ∆ − ∆=  recombines with 1m = . With calibration, the no 
state movement m grows at a flat rate of 1 instead of at the risk-free rate. The variable 
v is the annualized dividend yield and σ  is the annualized volatility of the underlying 
stock. In general, with an increased number of nodes to process, a trinomial tree gives 
better accuracy than the binomial tree when fewer time steps are modeled, saving on 
the computation speed and resources. Refer to the following figure:

Writing the TrinomialTreeOption class
The Python implementation of the trinomial tree is given in the following 
TrinomialTreeOption class, which inherits from the BinomialTreeOption class.
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The _setup_parameters_ method will implement the model parameters of the 
trinomial tree. The _initialize_stock_price_tree_ method will set up the 
trinomial tree to include the flat movement of stock prices. The _traverse_tree_ 
method takes into account the middle node after discounting the payoff. Save this 
file as TrinomialTreeOption.py:

""" Price an option by the Boyle trinomial tree """
from BinomialTreeOption import BinomialTreeOption
import math
import numpy as np

class TrinomialTreeOption(BinomialTreeOption):

    def _setup_parameters_(self):
        """ Required calculations for the model """
        self.u = math.exp(self.sigma*math.sqrt(2.*self.dt))
        self.d = 1/self.u
        self.m = 1
        self.qu = ((math.exp((self.r-self.div) *
                             self.dt/2.) -
                    math.exp(-self.sigma *
                             math.sqrt(self.dt/2.))) /
                   (math.exp(self.sigma *
                             math.sqrt(self.dt/2.)) -
                    math.exp(-self.sigma *
                             math.sqrt(self.dt/2.))))**2
        self.qd = ((math.exp(self.sigma *
                             math.sqrt(self.dt/2.)) -
                    math.exp((self.r-self.div) *
                             self.dt/2.)) /
                   (math.exp(self.sigma *
                             math.sqrt(self.dt/2.)) -
                    math.exp(-self.sigma *
                             math.sqrt(self.dt/2.))))**2.

        self.qm = 1 - self.qu - self.qd

    def _initialize_stock_price_tree_(self):
        """ Initialize a 2D tree at t=0 """
        self.STs = [np.array([self.S0])]

        for i in range(self.N):
            prev_nodes = self.STs[-1]
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            self.ST = np.concatenate(
                (prev_nodes*self.u, [prev_nodes[-1]*self.m,
                                     prev_nodes[-1]*self.d]))
            self.STs.append(self.ST)

    def _traverse_tree_(self, payoffs):
        """ Traverse the tree backwards """
        for i in reversed(range(self.N)):
            payoffs = (payoffs[:-2] * self.qu +
                       payoffs[1:-1] * self.qm +
                       payoffs[2:] * self.qd) * self.df

            if not self.is_european:
                payoffs = self.__check_early_exercise__(payoffs,
                                                        i)

        return payoffs

Using the same example of the binomial tree, we get the following result:

>>> from TrinomialTreeOption import TrinomialTreeOption

>>> eu_put = TrinomialTreeOption(

...     50, 50, 0.05, 0.5, 2,

>>> {"sigma": 0.3, "is_call": False})

>>> print "European put: %s" % eu_put.price()

European put: 3.33090549176 

>>> am_option = TrinomialTreeOption(

...     50, 50, 0.05, 0.5, 2,

>>> {"sigma": 0.3, "is_call": False, "is_eu": False})

>>> print "American put: %s" % am_option.price()

American put: 3.482414539021

We obtain prices of $3.33 and $3.48 for the European and American put option 
respectively.

Lattices in options pricing
In binomial trees, each node recombines at every alternative node. In trinomial trees, 
each node recombines at every other node. This property of recombining trees can 
also be represented as lattices to help you save memory without recomputing and 
storing recombined nodes.
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Using a binomial lattice
We will create a binomial lattice from the binomial CRR tree since, at every alternate 
up and down nodes, the prices recombine to the same probability of 1ud = . In the 
following figure, uS  and dS recombine with 0du udS S S= = . The tree can now be 
represented as a single list:

For a N-step binomial, a list of size 2 1N +  is required to contain the information on 
the underlying stock prices. For European option pricing, the odd nodes of payoffs 
from the list represent the option value upon maturity. The tree traverses backward to 
obtain the option value. For American option pricing, as the tree traverses backward, 
both ends of the list shrink, and the odd nodes represent the associated stock prices 
for any time step. Payoffs from the earlier exercise can then be taken into account.

Writing the BinomialCRROption class
Let's convert the binomial tree pricing into a lattice by CRR. We can inherit from the 
BinomialCRROption (which in turn inherits the BinomialTreeOption class) class 
and create a new class named BinomialCRRLattice. The following methods are 
overwritten with the implementation of the lattice while retaining the behavior  
of all the other pricing functions:
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•	 _setup_parameters_: This method is overwritten to initialize the CRR 
parameters of the parent class as well as declaring the new variable M as  
the list size.

•	 _initialize_stock_price_tree_: This method is overwritten to set up a 
one-dimensional NumPy array as the lattice with the size M.

•	 _initialize_payoffs_tree_ and __check_early_exercise__: These 
methods are overwritten to take into account the payoffs at odd nodes only.

Save this code to a file named BinomialCRRLattice.py:

""" Price an option by the binomial CRR lattice """
from BinomialCRROption import BinomialCRROption
import numpy as np

class BinomialCRRLattice(BinomialCRROption):

    def _setup_parameters_(self):
        super(BinomialCRRLattice, self)._setup_parameters_()
        self.M = 2*self.N + 1

    def _initialize_stock_price_tree_(self):
        self.STs = np.zeros(self.M)
        self.STs[0] = self.S0 * self.u**self.N

        for i in range(self.M)[1:]:
            self.STs[i] = self.STs[i-1]*self.d

    def _initialize_payoffs_tree_(self):
        odd_nodes = self.STs[::2]
        return np.maximum(
            0, (odd_nodes - self.K) if self.is_call
            else(self.K - odd_nodes))

    def __check_early_exercise__(self, payoffs, node):
        self.STs = self.STs[1:-1]  # Shorten the ends of the list
        odd_STs = self.STs[::2]
        early_ex_payoffs = \
            (odd_STs-self.K) if self.is_call \
            else (self.K-odd_STs)
        payoffs = np.maximum(payoffs, early_ex_payoffs)

        return payoffs
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Using the same stock information from our binomial CRR model example, we can 
price an European and American put option using the binomial lattice pricing:

>>> from BinomialCRRLattice import BinomialCRRLattice

>>> eu_option = BinomialCRRLattice(

...     50, 50, 0.05, 0.5, 2,

...     {"sigma": 0.3, "is_call": False})

>>> print "European put: %s" % eu_option.price()

European put: 3.1051473413 

>>> am_option = BinomialCRRLattice(

...     50, 50, 0.05, 0.5, 2,

...     {"sigma": 0.3, "is_call": False, "is_eu": False})

>>> print "American put: %s" % am_option.price()

American put: 3.4091814964

Using the trinomial lattice
The trinomial lattice works in very much the same way as the binomial lattice. Since 
each node recombines at every other node instead of alternate nodes, extracting odd 
nodes from the list is not necessary. As the size of the list is the same as the one in the 
binomial lattice, there are no extra storage requirements in trinomial lattice pricing, 
as explained in the following figure:
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Writing the TrinomialLattice class
In Python, let's create a class named TrinomialLattice for the trinomial lattice 
implementation that inherits from the TrinomialTreeOption class.

Just as we did for the BinomialCRRLattice class, the _setup_parameters_, 
_initialize_stock_price_tree_, _initialize_payoffs_tree_, and __check_
early_exercise__ methods are overwritten without having to take into account  
the payoffs at odd nodes:

""" Price an option by the trinomial lattice """
from TrinomialTreeOption import TrinomialTreeOption
import numpy as np

class TrinomialLattice(TrinomialTreeOption):

    def _setup_parameters_(self):
        super(TrinomialLattice, self)._setup_parameters_()
        self.M = 2*self.N+1

    def _initialize_stock_price_tree_(self):
        self.STs = np.zeros(self.M)
        self.STs[0] = self.S0 * self.u**self.N

        for i in range(self.M)[1:]:
            self.STs[i] = self.STs[i-1]*self.d

    def _initialize_payoffs_tree_(self):
        return np.maximum(
            0, (self.STs-self.K) if self.is_call
            else(self.K-self.STs))

    def __check_early_exercise__(self, payoffs, node):
        self.STs = self.STs[1:-1]  # Shorten the ends of the list
        early_ex_payoffs = \
            (self.STs-self.K) if self.is_call \
            else(self.K-self.STs)
        payoffs = np.maximum(payoffs, early_ex_payoffs)

        return payoffs
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Using the same examples as before, we can price the European and American 
options using the trinomial lattice model:

>>> from TrinomialLattice import TrinomialLattice

>>> eu_option = TrinomialLattice(

...     50, 50, 0.05, 0.5, 2, 

...     {"sigma": 0.3, "is_call":False})

>>> print "European put: %s" % eu_option.price()

European put: 3.33090549176 

>>> am_option = TrinomialLattice(

...     50, 50, 0.05, 0.5, 2,

>>> {"sigma": 0.3, "is_call": False, "is_eu": False})

>>> print "American put: %s" % am_option.price()

American put: 3.48241453902

The output agrees with the results obtained from the trinomial tree option  
pricing model.

Finite differences in options pricing
Finite difference schemes are very much similar to trinomial tree options pricing, 
where each node is dependent on three other nodes with an up movement, a down 
movement, and a flat movement. The motivation behind the finite differencing is the 
application of the Black-Scholes Partial Differential Equation (PDE) framework 
(involving functions and their partial derivatives) whose price ( )S t  is a function of 
( ),f S t , with r as the risk-free rate, t  as the time to maturity, and σ  as the volatility  

of the underlying security:

2
2 2

2

1
2

df df d frf rS S
dt dS dt

σ= + +

The finite difference technique tends to converge faster than lattices and 
approximates complex exotic options very well.

To solve a PDE by finite differences working backward in time, a discrete-time grid 
of size M  by N  is set up to reflect asset prices over a course of time, such that S  and 
t take on the following values at each point on the grid:

( )0, , 2 , 3 , , 1 , maxS dS dS dS M dS S= −…
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( )0, , 2 , 3 , , 1 ,t dt dt dt N dt T= −…

It follows that by grid notation, ( ), ,i jf f i dS j dt= . maxS  is a suitably large asset price 
that cannot be reached by the maturity time, T . dS  and dt  are thus intervals between 
each node in the grid, incremented by price and time respectively. The terminal 
condition at expiration time T  for every value of S  is ( ),0max S K−  for a call option 
with strike K  and ( ),0max K S−  for a put option. The grid traverses backward from 
the terminal conditions, complying with the PDE while adhering to the boundary 
conditions of the grid, such as the payoff from an early exercise.

The boundary conditions are defined values at the extreme ends of the nodes, where 
i=0 and i=N for every time at t. Values at the boundaries are used to calculate the 
values of all other lattice nodes iteratively using the PDE.

A visual representation of the grid is given by the following figure. As i and j 
increase from the top-left corner of the grid, the price S tends toward Smax  
(the maximum price possible) at the bottom-right corner of the grid:

A number of ways to approximate the PDE are as follows:

•	 Forward difference:

1, , , 1 ,,i j i j i j i jf f f fdf df
dS dS dt dt

+ +− −
= =
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•	 Backward difference:

, 1, , , 1,i j i j i j i jf f f fdf df
dS dS dt dt

− −− −
= =

•	 Central or symmetric difference:

1, 1, , 1 , 1,
2 2

i j i j i j i jf f f fdf df
dS dS dt dt

+ − + −− −
= =

•	 The second derivative:

2
1, , 1,

2 2

2i j i j i jf f fd f
dS dS

+ −− +
=

Once we have the boundary conditions set up, we can now apply an iterative 
approach using the explicit, implicit, or Crank-Nicolson method.

The explicit method
The explicit method for approximating ,i jf  is given by:

, , 1 1, 1, 1, 1,2 2
, 2

1
2 2

i j i j i j i j i j i j
i j

f f f f f f
rf ridS j

dt ds dS
σ− + − + −− − +

= + +

Here, it can be seen that the first difference is the backward difference with respect 
to t, the second difference is the central difference with respect to S, and the third 
difference is the second-order difference with respect to S. When we rearrange the 
terms, we have the following equation:

* * *
, 1, 1 , 1 1, 1i j i i j i i j i i jf a f b f c f− + + + += + +

where 1, 2, 3, 2,1,0j N N N= − − − …  and 1,2,3, 2, 1i M M= − −… :

( )* 2 21
2ia dt i riσ= −
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( )* 2 21ib dt i riσ= − −

( )* 2 21
2ic dt i riσ= +

The iterative approach of the explicit method can be visually represented by the 
following figure:

Writing the FiniteDifferences class
As we will be writing the explicit, implicit, and Crank-Nicolson methods of 
finite differences in Python, let's write a parent class that can inherit the common 
properties and functions of all three methods.

We will create a class called FiniteDifferences that accepts and assigns all 
the required parameters in the __init__ constructor method and save it as 
FiniteDifferences.py.

The price method is the public method used for calling the specific finite difference 
scheme implementation. It will invoke these methods in the following order:  
_setup_boundary_conditions, _setup_coefficients_, _traverse_grid_,  
and _interpolate_. These methods are explained as follows:

•	 _setup_boundary_conditions_: This method sets up the boundary 
conditions of the grid structure as a NumPy two-dimensional array

•	 _setup_coefficients_: This method sets up the necessary coefficients  
used for traversing the grid structure

•	 _traverse_grid_: This method iterates the grid structure backward in time, 
storing the calculated values toward the first column of the grid

•	 _interpolate_: Using the final calculated values on the first column of the 
grid, this method will interpolate these values to find the option price that 
closely infers the initial stock price, S0
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All of these methods are protected methods and may be overwritten by derived 
classes. The pass keyword simply does nothing; the derived classes will provide 
specific implementations of these functions:

""" Shared attributes and functions of FD """
import numpy as np

class FiniteDifferences(object):

    def __init__(self, S0, K, r, T, sigma, Smax, M, N,
                 is_call=True):
        self.S0 = S0
        self.K = K
        self.r = r
        self.T = T
        self.sigma = sigma
        self.Smax = Smax
        self.M, self.N = int(M), int(N)  # Ensure M&N are integers
        self.is_call = is_call

        self.dS = Smax / float(self.M)
        self.dt = T / float(self.N)
        self.i_values = np.arange(self.M)
        self.j_values = np.arange(self.N)
        self.grid = np.zeros(shape=(self.M+1, self.N+1))
        self.boundary_conds = np.linspace(0, Smax, self.M+1)

    def _setup_boundary_conditions_(self):
        pass

    def _setup_coefficients_(self):
        pass

    def _traverse_grid_(self):
        """  Iterate the grid backwards in time """
        pass

    def _interpolate_(self):
        """
        Use piecewise linear interpolation on the initial
        grid column to get the closest price at S0.
        """
        return np.interp(self.S0, 
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                         self.boundary_conds,
                         self.grid[:, 0])
    def price(self):
        self._setup_boundary_conditions_()
        self._setup_coefficients_()
        self._traverse_grid_()
        return self._interpolate_()

Writing the FDExplicitEu class
The Python implementation of finite differences by the explicit method is given in 
the following FDExplicitEu class, which inherits from the FiniteDifferences 
class and overrides the required implementation methods. Save this file as 
FDExplicitEu.py:

""" Explicit method of Finite Differences """
import numpy as np

from FiniteDifferences import FiniteDifferences

class FDExplicitEu(FiniteDifferences):

    def _setup_boundary_conditions_(self):
        if self.is_call:
            self.grid[:, -1] = np.maximum(
                self.boundary_conds - self.K, 0)
            self.grid[-1, :-1] = (self.Smax - self.K) * \
                                 np.exp(-self.r *
                                        self.dt *
                                        (self.N-self.j_values))
        else:
            self.grid[:, -1] = \
                np.maximum(self.K-self.boundary_conds, 0)
            self.grid[0, :-1] = (self.K - self.Smax) * \
                               np.exp(-self.r *
                                      self.dt *
                                      (self.N-self.j_values))

    def _setup_coefficients_(self):
        self.a = 0.5*self.dt*((self.sigma**2) *
                              (self.i_values**2) -
                              self.r*self.i_values)
        self.b = 1 - self.dt*((self.sigma**2) * 
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                              (self.i_values**2) + 
                              self.r)
        self.c = 0.5*self.dt*((self.sigma**2) * 
                              (self.i_values**2) + 
                              self.r*self.i_values)

    def _traverse_grid_(self):
        for j in reversed(self.j_values):
            for i in range(self.M)[2:]:
                self.grid[i,j] = self.a[i]*self.grid[i-1,j+1] +\
                                 self.b[i]*self.grid[i,j+1] + \
                                 self.c[i]*self.grid[i+1,j+1] 

On completion of traversing the grid structure, the first column contains the present 
value of the initial asset prices at t=0. The interp function of NumPy is used to 
perform a linear interpolation to approximate the option value.

Besides using linear interpolation as the most common choice for the interpolation 
method, the other methods such as the spline or cubic may be used to approximate 
the option value.

Consider the example of an European put option. The underlying stock price is 
$50 with a volatility of 40 percent. The strike price of the put option is $50 with an 
expiration time of 5 months. The risk-free rate is 10 percent.

We can price the option using the explicit method with a Smax value of 100, an M 
value of 1000, and a N value of 100:

>>> from FDExplicitEu import FDExplicitEu

>>> option = FDExplicitEu(50, 50, 0.1, 5./12., 0.4, 100, 100, 

...                       1000, False)

>>> print option.price()

4.07288227815

What happens when other values of M and N are chosen improperly?

>>> option = FDExplicitEu(50, 50, 0.1, 5./12., 0.4, 100, 100, 

...                       100, False)

>>> print option.price()

-1.62910770723e+53

It appears that the explicit method of the finite difference scheme suffers from 
instability problems.
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The implicit method
The instability problem of the explicit method can be overcome using the forward 
difference with respect to time. The implicit method for approximating ,i jf  is  
given by:

, 1 , 1, 1, 1, , 1,2 2
, 2

21
2 2

i j i j i j i j i j i j i j
i j

f f f f f f f
rf ridS j

dt dS dS
σ+ + − + −− − − +

= + +

Here, it can be seen that the only difference between the implicit and explicit 
approximating scheme lies in the first difference, where the forward difference with 
respect to  is used in the implicit scheme. When we rearrange the terms, we have 
the following expression:

, 1 1, , 1,i j j i j i i j i i jf a f b f c f+ − += + +

Here, 1, 2, 2,1,0j N N= − − …  and 1,2,3, , 1i M= −…

( )2 21
2ia ridt i dtσ= −

2 21ib i dt rdtσ= + +

( )2 21
2ic ridt i dtσ= − + +

The iterative approach of the implicit scheme can be visually represented by the 
following figure:
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From the figure, it is intuitive to note that values of 1j +  are required to be computed 
before they can be used in the next iterative step, as the grid traverses backward. 
In the implicit scheme, the grid can be thought of as representing a system of linear 
equations at each iteration, as follows:

1, 1 0, 1, 11 1

2, 2, 12 2 2

3, 3, 13

2, 2, 12 2 2

1, 1 , 1, 11 1

0 0 0 0
00 0 0
00 0 0 0
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0 0 0 0
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 
 

By rearranging the terms, we get the following equation:

1, 1, 1 1 0,1 1

2, 2, 12 2 2

3, 3, 13

2, 2, 12 2 2

1, 1, 1 1 ,1 1

0 0 0 0
00 0 0
00 0 0 0

00 0 0
0 0 0 0

j j j

j j

j j

M j M jM M M

M j M j M M jM M

f f a fb c
f fa b c
f fb

f fa b c
f f C fa b

+

+

+

− − +− − −

− − + −− −

     
     
    
    

= −    
    
    
    

           

�
� � �� � � � � �




 
 
 
 
 
 
 

The linear system of equations can be represented in the form of Ax B= , where we 
want to solve for values of x  in each iteration. Since the matrix A is tri-diagonal, we 
can use the LU factorization, where A=LU, for faster computation. Remember that 
we solved the linear system of equations using the LU decomposition in Chapter 2, 
The Importance of Linearity in Finance.

Writing the FDImplicitEu class
The Python implementation of the implicit scheme is given in the following 
FDImplicitEu class. We can inherit the implementation of the explicit method from 
the FDExplicitEu class discussed earlier and override the necessary methods of 
interest, namely the _setup_coefficients_ and _traverse_grid_ methods:

"""
Price a European option by the implicit method 
of finite differences. 
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"""
import numpy as np
import scipy.linalg as linalg

from FDExplicitEu import FDExplicitEu

class FDImplicitEu(FDExplicitEu):

    def _setup_coefficients_(self):
        self.a = 0.5*(self.r*self.dt*self.i_values -
                      (self.sigma**2)*self.dt*(self.i_values**2))
        self.b = 1 + \
                 (self.sigma**2)*self.dt*(self.i_values**2) + \
                 self.r*self.dt
        self.c = -0.5*(self.r * self.dt*self.i_values +
                       (self.sigma**2)*self.dt*(self.i_values**2))
        self.coeffs = np.diag(self.a[2:self.M], -1) + \
                      np.diag(self.b[1:self.M]) + \
                      np.diag(self.c[1:self.M-1], 1)

    def _traverse_grid_(self):
        """ Solve using linear systems of equations """
        P, L, U = linalg.lu(self.coeffs)
        aux = np.zeros(self.M-1)

        for j in reversed(range(self.N)):
            aux[0] = np.dot(-self.a[1], self.grid[0, j])
            x1 = linalg.solve(L, self.grid[1:self.M, j+1]+aux)
            x2 = linalg.solve(U, x1)
            self.grid[1:self.M, j] = x2

Using the same example as with the explicit scheme, we can price an European put 
option using the implicit scheme:

>>> from FDImplicitEu import FDImplicitEu

>>> option = FDImplicitEu(50, 50, 0.1, 5./12., 0.4, 100, 100, 

...                       100, False)

>>> print option.price()

4.06580193943 

>>> option = FDImplicitEu(50, 50, 0.1, 5./12., 0.4, 100, 100,

...                       1000, False)

>>> print option.price()

4.07159418805
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Given the current parameters and input data, it is observed that there are no stability 
issues with the implicit scheme.

The Crank-Nicolson method
Another way of avoiding the instability issue, as seen in the explicit method, is to 
use the Crank-Nicolson method. The Crank-Nicolson method converges much more 
quickly using a combination of the explicit and implicit methods, taking the average 
of both. This leads us to the following equation:

, 1 ,

, , 1 1, 1 1, 1 1, 1,

1, 1 , 1 1, 12 2 2
2

1, , 1,2 2 2
2

1 1
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1 1
2 2 2 2
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4

i j i j

i j i j i j i j i j i j

i j i j i j

i j i j i j

rf rf

f f f f f f
ridS ridS

dt dS dS

f f f
i dS

dS

f f f
i dS

dS

σ

σ

−

− + − − − + −

+ − − − −

+ −

+

− − −   
= +   

   
− + 

+  
 

− + 
+  

 

This equation can also be rewritten as follows:

( ) ( )1, 1 , 1 1, 1 1, , 1 1,1 1i i j i i j i i j i i j i i j i i jf f f f f fα β γ α β γ− − − + − − − +− + − − = + − −

Here:

( )2 2

4i
dt i riα σ= −

( )2 2

2i
dt i riβ σ= +

( )2 2

4i
dt i riγ σ= +
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The iterative approach of the implicit scheme can be visually represented by the 
following figure:

We can treat the equations as a system of linear equations in a matrix form:

1 1 2j jM f M f− =

Here:

1 1

2 2 2

3 3 3
1

2 2 2

1 1

1 0 0 0 0
1 0 0 0

0 1 0 0
0 0 0
0 0 0 1
0 0 0 0 1

M M M

M M

M

β γ
α β γ

α β γ

α β γ
α β

− − −

− −

− − 
 − − − 
 − − −

=  
 
 − − −
 

− −  

� � �

1 1

2 2 2

3 3 3
2

2 2 2

1 1

1 0 0 0 0
1 0 0 0

0 1 0 0
0 0 0
0 0 0 1
0 0 0 0 1

M M M

M M

M

β γ
α β γ

α β γ

α β γ
α β

− − −

− −

+ 
 + 
 + −

=  
 
 +
 

+  

� � �
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i j j M jf f f f − =  …

We can solve for the matrix M on every iterative procedure.
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Writing the FDCnEu class
The Python implementation of the Crank-Nicolson method is given in the following 
FDCnEu class, which inherits from the FDExplicitEu class and overrides only the  
_setup_coefficients_ and _traverse_grid_ methods. Save this file as FDCnEu.py:

""" Crank-Nicolson method of Finite Differences """
import numpy as np
import scipy.linalg as linalg

from FDExplicitEu import FDExplicitEu

class FDCnEu(FDExplicitEu):

    def _setup_coefficients_(self):
        self.alpha = 0.25*self.dt*(
            (self.sigma**2)*(self.i_values**2) -
            self.r*self.i_values)
        self.beta = -self.dt*0.5*(
            (self.sigma**2)*(self.i_values**2) +
            self.r)
        self.gamma = 0.25*self.dt*(
            (self.sigma**2)*(self.i_values**2) +
            self.r*self.i_values)
        self.M1 = -np.diag(self.alpha[2:self.M], -1) + \
                  np.diag(1-self.beta[1:self.M]) - \
                  np.diag(self.gamma[1:self.M-1], 1)
        self.M2 = np.diag(self.alpha[2:self.M], -1) + \
                  np.diag(1+self.beta[1:self.M]) + \
                  np.diag(self.gamma[1:self.M-1], 1)

    def _traverse_grid_(self):
        """ Solve using linear systems of equations """
        P, L, U = linalg.lu(self.M1)

        for j in reversed(range(self.N)):
            x1 = linalg.solve(L,
                              np.dot(self.M2,
                                     self.grid[1:self.M, j+1]))
            x2 = linalg.solve(U, x1)
            self.grid[1:self.M, j] = x2
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Using the same examples as with the explicit and implicit methods, we can price  
an European put option using the Crank-Nicolson method for different time  
point intervals:

>>> from FDCnEu import FDCnEu

>>> option = FDCnEu(50, 50, 0.1, 5./12., 0.4, 100, 100,

...                 100, False)

>>> print option.price()

4.072254508 

>>> option = FDCnEu(50, 50, 0.1, 5./12., 0.4, 100, 100,

...                 1000, False)

>>> print option.price()

4.07223835449 

From the observed values, the Crank-Nicolson method not only avoids the instability 
issue seen in the explicit scheme, but also converges faster than both the explicit and 
implicit methods. The implicit method requires more iterations, or bigger values of 
N, to produce values close to those of the Crank-Nicolson method.

Pricing exotic barrier options
Finite differences are especially useful in pricing exotic options pricing. The nature of 
the option will dictate the specifications of the boundary conditions.

In this section, we will take a look at an example of pricing a down-and-out barrier 
option with the Crank-Nicolson method of finite differences. Due to its relative 
complexity, other analytical methods, such as Monte Carlo methods, are usually 
employed in favor of finite difference schemes.

A down-and-out option
Let's take a look at an example of a down-and-out option. At any time during the life 
of the option, should the underlying asset price fall below a Sbarrier barrier price, 
the option is considered worthless. Since in the grid the finite difference scheme 
represents all the possible price points, we only need to consider nodes with the 
following price range:

barrier t maxS S S≤ ≤



Numerical Procedures

[ 112 ]

We can then set up the boundary conditions as follows:

( ), 0maxf S t =

( ), 0barrierf S t =

Writing the FDCnDo class 
Let's create a class named FDCnDo that inherits from the FDCnEu class we discussed 
earlier. We can take into account the barrier price in the constructor method, while 
leaving the rest of the Crank-Nicolson implementation in the FDCnEu class unchanged:

"""
Price a down-and-out option by the Crank-Nicolson
method of finite differences.
"""
import numpy as np

from FDCnEu import FDCnEu

class FDCnDo(FDCnEu):

    def __init__(self, S0, K, r, T, sigma, Sbarrier, Smax, M, N,
                 is_call=True):
        super(FDCnDo, self).__init__(
            S0, K, r, T, sigma, Smax, M, N, is_call)
        self.dS = (Smax-Sbarrier)/float(self.M)
        self.boundary_conds = np.linspace(Sbarrier, 
                                          Smax, 
                                          self.M+1)
        self.i_values = self.boundary_conds/self.dS

Consider an example of a down-and-out option. The underlying stock price is $50 
with a volatility of 40 percent. The strike price of the option is $50 with an expiration 
time of 5 months. The risk-free rate is 10 percent. The barrier price is $40.

We can price a call option and a put down-and-out option with Smax as 100, M as 120, 
and N as 500:

>>> from FDCnDo import FDCnDo

>>> option = FDCnDo(50, 50, 0.1, 5./12., 0.4, 40, 100, 120, 500)

>>> print option.price()
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5.49156055293 

>>> option = FDCnDo(50, 50, 0.1, 5./12., 0.4, 40, 100, 120, 500,

...                 False)

>>> print option.price()

0.541363502895

The prices of the down-and-out call and put options are $5.4916 and $0.5414 
respectively.

American options pricing with finite 
differences
So far, we have priced European options and exotic options. Due to the probability 
of an early exercise nature in American options, pricing such options is less 
straightforward. An iterative procedure is required in the implicit Crank-Nicolson 
method, where the payoffs from early exercises in the current period take into 
account the payoffs of an early exercise in the prior period. The Gauss-Siedel 
iterative method is proposed in the pricing of American options in the Crank-
Nicolson method.

Remember in Chapter 2, The Importance of Linearity in Finance, we covered the  
Gauss-Siedel method of solving systems of linear equations in the form of Ax B= . 
Here, the matrix A is decomposed into A L U= + , where L is a lower triangular  
matrix and U is an upper triangular matrix. Let's take a look at an example of 
a 4 by 4 matrix A:

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0

a b c d a b c d
e f g h e f g h

A
i j k l i j k l
m n o p m n o p

     
     
     = = +
     
     
     

The solution is then obtained iteratively as follows:

Ax B=

( )L U x B+ =
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Lx B Ux= −

( )1
1nx L B Ux−
+ = −

We can adapt the Gauss-Siedel method to our Crank-Nicolson implementation  
as follows:

0, 1 0,

1 1 2 1
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0

j j

j j j

f f

r M f M f α

−

−

+ 
 
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�

This equation satisfies the early exercise privilege equation:

( ), 1 , 1max ,i j i jf f K idS− −= −

Writing the FDCnAm class
Let's create a class named FDCnAm that inherits from the FDCnEu class, which is the 
Crank-Nicolson method's counterpart for pricing European options. The _setup_
coefficients_ method may be reused, while overriding all other methods for the 
inclusion of payoffs from an early exercise, if any:

""" Price an American option by the Crank-Nicolson method """
import numpy as np
import sys

from FDCnEu import FDCnEu

class FDCnAm(FDCnEu):

    def __init__(self, S0, K, r, T, sigma, Smax, M, N, omega, tol,
                 is_call=True):
        super(FDCnAm, self).__init__(
            S0, K, r, T, sigma, Smax, M, N, is_call)
        self.omega = omega
        self.tol = tol
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        self.i_values = np.arange(self.M+1)
        self.j_values = np.arange(self.N+1)

    def _setup_boundary_conditions_(self):
        if self.is_call:
            self.payoffs = np.maximum(
                self.boundary_conds[1:self.M]-self.K, 0)
        else:
            self.payoffs = np.maximum(
                self.K-self.boundary_conds[1:self.M], 0)

        self.past_values = self.payoffs
        self.boundary_values = self.K * \
                               np.exp(-self.r *
                                      self.dt *
                                      (self.N-self.j_values))

    def _traverse_grid_(self):
        """ Solve using linear systems of equations """
        aux = np.zeros(self.M-1)
        new_values = np.zeros(self.M-1)

        for j in reversed(range(self.N)):
            aux[0] = self.alpha[1]*(self.boundary_values[j] +
                                    self.boundary_values[j+1])
            rhs = np.dot(self.M2, self.past_values) + aux
            old_values = np.copy(self.past_values)
            error = sys.float_info.max

            while self.tol < error:
                new_values[0] = \
                    max(self.payoffs[0],
                        old_values[0] +
                        self.omega/(1-self.beta[1]) *
                        (rhs[0] -
                         (1-self.beta[1])*old_values[0] +
                         (self.gamma[1]*old_values[1])))

                for k in range(self.M-2)[1:]:
                    new_values[k] = \
                        max(self.payoffs[k],
                            old_values[k] +
                            self.omega/(1-self.beta[k+1]) *
                            (rhs[k] +
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                             self.alpha[k+1]*new_values[k-1] -
                             (1-self.beta[k+1])*old_values[k] +
                             self.gamma[k+1]*old_values[k+1]))

                new_values[-1] = \
                    max(self.payoffs[-1],
                        old_values[-1] +
                        self.omega/(1-self.beta[-2]) *
                        (rhs[-1] +
                         self.alpha[-2]*new_values[-2] -
                         (1-self.beta[-2])*old_values[-1]))

                error = np.linalg.norm(new_values - old_values)
                old_values = np.copy(new_values)

            self.past_values = np.copy(new_values)

        self.values = np.concatenate(([self.boundary_values[0]],
                                      new_values,
                                      [0]))

    def _interpolate_(self):
        # Use linear interpolation on final values as 1D array
        return np.interp(self.S0,
                         self.boundary_conds,
                         self.values)

The tolerance parameter is used in the Gauss-Siedel method as the convergence 
criterion. The omega is the over-relaxation parameter. Higher omega values give 
faster convergence, but this also comes with higher possibilities of the algorithm  
not converging.

Let's price an American call-and-put option with an underlying asset price of $50 
and volatility of 40 percent, a strike price of $50, a risk-free rate of 10 percent, and 
an expiration date of 5 months. We choose a Smax value of 100, M as 100, N as 42, an 
omega parameter value of 1.2, and a tolerance value of 0.001: 

>>> from FDCnDo import FDCnDo

>>> option = FDCnAm(50, 50, 0.1, 5./12., 0.4, 100, 100, 

...                 42, 1.2, 0.001)

>>> print option.price()

6.10868281539 
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>>> option = FDCnAm(50, 50, 0.1, 5./12., 0.4, 100, 100, 

...                 42, 1.2, 0.001, False)

>>> print option.price()

4.27776422938

The prices of the call-and-put American stock options by the Crank-Nicolson method 
are $6.109 and $4.2778 respectively.

Putting it all together – implied volatility 
modeling
In the options pricing methods we learned so far, a number of parameters are 
assumed to be constant: interest rates, strike prices, dividends, and volatility. Here, 
the parameter of interest is volatility. In quantitative research, the volatility ratio is 
used to forecast price trends.

To derive implied volatilities, we need to refer to Chapter 3, Nonlinearity in Finance 
where we discussed root-finding methods of nonlinear functions. We will use the 
bisection method of numerical procedures in our next example to create an implied 
volatility curve.

Implied volatilities of AAPL American put 
option
Let's consider the option data of the stock Apple (AAPL) gathered at the end of day 
on October 3, 2014, given in the following table. The option expires on December 20, 
2014. The prices listed are the mid-points of the bid and ask prices:

Strike price Call price Put price
75 30 0.16
80 24.55 0.32
85 20.1 0.6
90 15.37 1.22
92.5 10.7 1.77
95 8.9 2.54
97.5 6.95 3.55
100 5.4 4.8
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Strike price Call price Put price
105 4.1 7.75
110 2.18 11.8
115 1.05 15.96
120 0.5 20.75
125 0.26 25.81

The last traded price of AAPL was 99.62 with an interest rate of 2.48 percent and a 
dividend yield of 1.82 percent. The American options expire in 78 days.

Using this information, let's create a new class named ImpliedVolatilityModel that 
accepts the stock option's parameters in the __init__ constructor method. Import the 
BinomialLROption class that we created for the Leisen-Reimer binomial tree covered 
in the earlier section of this chapter. Also, import the bisection.py file that we 
created using the bisection function covered in Chapter 3, Nonlinearity in Finance.

The _option_valuation_ method accepts the strike price K and the volatility 
value sigma to compute the value of the option. In this example, we are using the 
BinomialLROption pricing method.

The get_implied_volatilities public method accepts a list of strike and option 
prices to compute the implied volatilities by the bisection method for every price 
available. Therefore, the length of the two lists must be the same.

The Python code for the ImpliedVolatilityModel is given as follows:

"""
Get implied volatilities from a Leisen-Reimer binomial
tree using the bisection method as the numerical procedure.
"""
from bisection import bisection
from BinomialLROption import BinomialLROption

class ImpliedVolatilityModel(object):

    def __init__(self, S0, r, T, div, N,
                 is_call=False):
        self.S0 = S0
        self.r = r
        self.T = T
        self.div = div
        self.N = N
        self.is_call = is_call
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    def _option_valuation_(self, K, sigma):
        # Use the binomial Leisen-Reimer tree
        lr_option = BinomialLROption(
            self.S0, K, self.r,  self.T, self.N,
            {"sigma": sigma,
             "is_call": self.is_call,
             "div": self.div})
        return lr_option.price()

    def get_implied_volatilities(self, Ks, opt_prices):
        impvols = []
        for i in range(len(Ks)):
            # Bind f(sigma) for use by the bisection method
            f = lambda sigma: \
                self._option_valuation_(
                    Ks[i], sigma) - opt_prices[i]
            impv = bisection(f, 0.01, 0.99, 0.0001, 100)[0]
            impvols.append(impv)
        return impvols
if __name__ == "__main__":

Using this model, let's find out the implied volatilities of the American put options 
using this particular set of data:

>>> # The data

>>> strikes = [ 75, 80, 85, 90, 92.5, 95, 97.5,

...             100, 105, 110, 115, 120, 125]

>>> put_prices = [0.16, 0.32, 0.6, 1.22, 1.77, 2.54, 3.55,

...               4.8, 7.75, 11.8, 15.96, 20.75, 25.81]

>>>

>>> model = ImpliedVolatilityModel(99.62, 0.0248, 78/365.,

...                           0.0182, 77, is_call=False)

>>> impvols_put = model.get_implied_volatilities(strikes, 

                                             put_prices) 

The implied volatility values are now stored in the impvols_put variable as a list 
object. Let's plot these values against the strike prices so that we can get an implied 
volatility curve:

>>> import matplotlib.pyplot as plt

>>> plt.plot(strikes, impvols_put)

>>> plt.xlabel('Strike Prices')

>>> plt.ylabel('Implied Volatilities')
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>>> plt.title('AAPL Put Implied Volatilities expiring in 78 days')

>>> plt.show()

This would give us the volatility smile, as shown in the following figure. Here, we 
have modeled a Leisen-Reimer tree with 77 steps, each step representing one day:

Of course, pricing an option daily may not be ideal since markets change by fractions 
of a millisecond. We used the bisection method to solve the implied volatility as 
implied by the binomial tree, as opposed to the realized volatility values directly 
observed from market prices.

Should we fit this curve against a polynomial curve to identify potential arbitrage 
opportunities? Or extrapolate the curve to derive further insights on potential 
opportunities from implied volatilities of far out-of-the-money and in-the-money 
options? Well, these questions are for options traders like you to find out!
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Summary
In this chapter, we looked at a number of numerical procedures in derivative pricing 
the most common being options. One such procedure is the use of trees, with 
binomial trees being the simplest structure to model asset information, where one 
node extends to two other nodes in each time step, representing an up state and a 
down state respectively. In trinomial trees, each node extends to three other nodes in 
each time step, representing an up state, a down state, and a state with no movement 
respectively. As the tree traverses upwards, the underlying asset is computed and 
represented at each node. The option then takes on the structure of this tree and, 
starting from the terminal payoffs, the tree traverses backward and toward the 
root, which converges to the current discounted option price. Besides binomial and 
trinomial trees, trees can take on the form of the Cox-Ross-Rubinstein, Jarrow-Rudd, 
Tian, or Leisen-Reimer parameters.

By adding another layer of nodes around our tree, we introduced additional 
information from which we can derive the Greeks such as the delta and gamma 
without incurring additional computational cost.

Lattices were introduced as a way of saving storage costs over binomial and 
trinomial trees. In lattice pricing, nodes with new information are saved only  
once and reused later on nodes that require no change in the information.

We also discussed the finite difference schemes in option pricing, consisting of 
terminal and boundary conditions. From the terminal conditions, the grid traverses 
backward in time using the explicit method, implicit method, and the Crank-
Nicolson method. Besides pricing European and American options, finite difference 
pricing schemes can be used to price exotic options, where we looked at an example 
of pricing a down-and-out barrier option.

By importing the bisection root-finding method learned in Chapter 3, Nonlinearity in 
Finance and the binomial Leisen-Reimer tree model in this chapter, we used market 
prices of an American option to create an implied volatility curve for further studies.

In the next chapter, we will take a look at working with interest rate instruments.
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Interest Rates and 
Derivatives

Interest rates affect economic activities at all levels. Central banks, including the 
Federal Reserve (informally known as the Fed) target interest rates as a policy tool to 
influence economic activity. Interest rate derivatives are popular with investors who 
require customized cash flow needs or specific views on interest rate movements.

One of the key challenges that interest rate derivative traders face is to have a good 
and robust pricing procedure for these products. This involves understanding the 
complicated behavior of an individual interest rate movement. Several interest rate 
models have been proposed for financial studies. Some common models studied in 
finance are the Vasicek model, CIR model, and Hull-White model. These interest 
rate models involve modeling the short rate and rely on factors (or sources of 
uncertainty) with most of them using only one factor. Two-factor and multifactor 
interest rate models have been proposed.

In this chapter, we will cover the following topics:

•	 The yield curve in a normal environment and an inverted environment
•	 Valuing a zero-coupon bond using Python
•	 Bootstrapping a yield curve
•	 Calculating forward rates from the yield curve
•	 Calculating the yield to maturity and price of a bond
•	 Calculating the bond duration and convexity using Python
•	 Discussing short rate models as a function of the yield curve
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•	 The Vasicek short rate model
•	 The Cox-Ingersoll-Ross short rate model
•	 The Rendleman and Bartter short rate model
•	 The Brennan and Schwartz short rate model
•	 Pricing a callable zero-coupon bond using finite differences
•	 Discussing methods of callable bond pricing

Fixed-income securities
Corporations and governments issue fixed-income securities as a means of raising 
money. The owner of such debts lends money and expects to receive the principal 
when the debt matures. The issuer who wishes to borrow money may issue a fixed 
amount of interest payment during the lifetime of the debt at prespecified times.

The holder of debt securities, such as U.S. Treasury bills, notes, and bonds, faces the 
risk of default by the issuer. The federal government and municipal government are 
thought to face the least default risk since they can easily raise taxes and create more 
money to repay the outstanding debt dues.

Most bonds pay a fixed amount of interest semi-annually, while some pay quarterly, 
or annually. These interest payments are also referred to as coupons. They are 
quoted as a percentage of the face value or par amount of the bond on an annual 
basis. For example, a five-year $10,000 Treasury bond with a coupon rate of 5 percent 
pays coupons of $500 in each year, or coupons of $250 every six months, up till and 
including the maturity date. Should the interest rates drop and new T-bonds pay a 
3 percent coupon rate, the buyer of the new bond will only receive coupons of $300 
annually, while existing holders of the 5 percent bond will continue to receive $500 
annually. As the characteristic of the bonds influences its prices so they're closely 
related to current levels of the interest rates in an inverse relationship manner, the 
value of the bond decreases as the interest rates increase. As interest rates decrease, 
bond prices increase.

Yield curves
In a normal yield curve environment, long-term interest rates are higher than  
short-term interest rates. Investors expect to be compensated with higher returns 
when they lend money for a longer period since they are exposed to higher default 
risk. The normal or positive yield curve is said to be upward sloping, as shown in  
the following graph:
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In certain economic conditions, the yield curve can be inverted. Long-term interest 
rates are lower than short-term interest rates. Such a condition occurs when the 
supply of money is tight. Investors are willing to forgo long-term gains to preserve 
their wealth in the short term. During periods of high inflation, where the inflation 
rate exceeds the rate of coupon interests, negative interest rates may be observed. 
Investors are willing to pay in the short term just to secure their long-term wealth. 
The inverted yield curve is said to be downward sloping, as shown in the  
following graph:
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Valuing a zero-coupon bond
A zero-coupon bond is a bond that does not pay any periodic interest except on 
maturity, where the principal or face value is repaid. Zero-coupon bonds are also 
called pure discount bonds.

A zero-coupon bond can be valued as follows:

( )1 t
facevaluepriceof zerocouponbond

y
=

+

Here, y  is the annually compounded yield or rate of the bond, and t  is the time 
remaining to the maturity of the bond.

Let's take a look at an example of a 5-year zero-coupon bond with a face value of 
$100. The yield is 5 percent, compounded annually. The price can be calculated  
as follows:

( )5
100 $78.35

1 0.05
=

+

A simple Python zero-coupon bond calculator can be used to illustrate this example:

def zero_coupon_bond(par, y, t):
    """
    Price a zero coupon bond.
    
    Par - face value of the bond.
    y - annual yield or rate of the bond.
    t - time to maturity in years.
    """
    return par/(1+y)**t

Using the preceding example, we get the following result:

>>> print zero_coupon_bond(100, 0.05, 5)

78.3526166468

In the preceding example, we assumed that the investor is able to invest $78.35 at the 
prevailing annual interest rate of 5 percent for 5 years, compounded annually.
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Spot and zero rates
As the compounding frequency increases (say, from compounded yearly to 
compounded daily), the future value of money reaches an exponential limit. That is 
to say, the present value of $100 today will reach a future value of $100 RTe  when it 
is invested at a continuously compounded rate R for a period of time, T. Discounting 
these values for a security that pays $100 at a future time T with a continuously 
compounded discount rate R, its value at time zero is 100

RTe
. This rate is known as the 

spot rate.

Spot rates represent the current interest rates for several maturities, should we want 
to borrow or lend money now. Zero rates represent the internal rate of return of 
zero-coupon bonds.

We can use spot rates and zero rates of bonds of different maturities to construct the 
present yield curve.

Bootstrapping a yield curve
Short-term spot rates can be derived directly from various short-term securities, such 
as zero-coupon bonds, T-bills, notes, and Eurodollar deposits. However, longer-
term spot rates are typically derived from the prices of long-term bonds through a 
bootstrapping process, taking into account the spot rates of maturities corresponding 
to the coupon payment date. After obtaining short-term and long-term spot rates, the 
yield curve can then be constructed.

Let's illustrate the bootstrapping of the yield curve with an example. The following 
table shows a list of bonds with different maturities and prices:

Bond face value 
in Dollars

Time to maturity 
in years

Annual coupon 
in Dollars

Bond cash price 
in Dollars

100 0.25 0 97.50
100 0.50 0 94.90
100 1.00 0 90.00
100 1.50 8 96.00
100 2.00 12 101.60
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An investor of a 3-month zero-coupon bond today at $97.50 would earn an interest of 
$2.50. The 3-month spot rate can be calculated as follows:

0.25

10097.50 ye
=

0.25 1.0256ye =

4 1.0256 0.10127y ln= =

Thus, the 3-month zero rate is 10.127 percent with continuous compounding. The 
spot rates of the zero-coupon bonds are computed in the following table:

Time to maturity in years Spot rate (in percent)
0.25 10.127
0.50 10.469
1.00 10.536

Using these spot rates, we can now price the 1.5-year bond as:

( )( ) ( )( ) ( )( )0.10469 0.5 0.10536 1.0 1.54 4 104 96ye e e− − −+ + =

To solve for y, the spot rate for the 1.5-year bond and 2-year bond is 10.681 percent 
and 10.808 percent respectively.

The following code is an implementation of bootstrapping a yield curve in Python. 
Save this code to BootstrapYieldCurve.py:

""" Bootstrapping the yield curve """
import math
    
class BootstrapYieldCurve():
    
    def __init__(self):
        self.zero_rates = dict()  # Map each T to a zero rate
        self.instruments = dict()  # Map each T to an instrument
        
    def add_instrument(self, par, T, coup, price,
                       compounding_freq=2):
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        """  Save instrument info by maturity """
        self.instruments[T] = (par, coup, price, compounding_freq)
    
    def get_zero_rates(self):
        """  Calculate a list of available zero rates """
        self.__bootstrap_zero_coupons__()
        self.__get_bond_spot_rates__()
        return [self.zero_rates[T] for T in self.get_maturities()]
        
    def get_maturities(self):
        """ Return sorted maturities from added instruments. """
        return sorted(self.instruments.keys())
        
    def __bootstrap_zero_coupons__(self):
        """ Get zero rates from zero coupon bonds """
        for T in self.instruments.iterkeys():
            (par, coup, price, freq) = self.instruments[T]
            if coup == 0:
                self.zero_rates[T] = \
                    self.zero_coupon_spot_rate(par, price, T)
                    
    def __get_bond_spot_rates__(self):
        """ Get spot rates for every marurity available """
        for T in self.get_maturities():
            instrument = self.instruments[T]
            (par, coup, price, freq) = instrument

            if coup != 0:
                self.zero_rates[T] = \
                    self.__calculate_bond_spot_rate__(
                        T, instrument)
                
    def __calculate_bond_spot_rate__(self, T, instrument):
        """ Get spot rate of a bond by bootstrapping """
        try:
            (par, coup, price, freq) = instrument
            periods = T * freq  # Number of coupon payments
            value = price
            per_coupon = coup / freq  # Coupon per period

            for i in range(int(periods)-1):
                t = (i+1)/float(freq)
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                spot_rate = self.zero_rates[t]
                discounted_coupon = per_coupon * \
                                    math.exp(-spot_rate*t)
                value -= discounted_coupon

            # Derive spot rate for a particular maturity
            last_period = int(periods)/float(freq)        
            spot_rate = -math.log(value /
                                  (par+per_coupon))/last_period
            return spot_rate

        except:
            print "Error: spot rate not found for T=%s" % t
            
    def zero_coupon_spot_rate(self, par, price, T):
        """ Get zero rate of a zero coupon bond """
        spot_rate = math.log(par/price)/T
        return spot_rate

We can instantiate the BootstrapYieldCurve class, and add each bond's 
information from the preceding table: 

>>> from BootstrapYieldCurve import BootstrapYieldCurve

>>> yield_curve = BootstrapYieldCurve()

>>> yield_curve.add_instrument(100, 0.25, 0., 97.5)

>>> yield_curve.add_instrument(100, 0.5, 0., 94.9)

>>> yield_curve.add_instrument(100, 1.0, 0., 90.)

>>> yield_curve.add_instrument(100, 1.5, 8, 96., 2)

>>> yield_curve.add_instrument(100, 2., 12, 101.6, 2)

>>> y = yield_curve.get_zero_rates()

>>> x = yield_curve.get_maturities()

Calling the get_zero_rates method in the class returns a list of spot rates in the 
same order as the maturities, which are stored in the y and x variables respectively. 
When we plot x and y on a graph, we get the following output:

>>> import matplotlib.pyplot as plt

>>> plt.plot(x, y)

>>> plt.title("Zero Curve")

>>> plt.ylabel("Zero Rate (%)")

>>> plt.xlabel("Maturity in Years")

>>> plt.show()
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In a normal yield curve environment, where the interest rates increase as the 
maturities increase, we can obtain an upward-sloping yield curve.

Forward rates
An investor who plans to invest at a later time might be curious to know what 
the future interest rate might look like, as implied by today's term structure of 
interest rates. For example, you might ask: What is the one-year spot rate one year 
from now? To answer this question, one can calculate forward rates for the period 
between 1T  and 2T  using this formula:

2 2 1 1

2 1
forward

r T rTr
T T
−

=
−

Here, 1r  and 2r  are the continuously compounded annual interest rates at time period 
1T  and 2T  respectively.
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The following Python code helps us generate a list of forward rates from a list of  
spot rates:

"""
Get a list of forward rates
starting from the second time period
"""

class ForwardRates(object):
    
    def __init__(self):
        self.forward_rates = []
        self.spot_rates = dict()
        
    def add_spot_rate(self, T, spot_rate):
        self.spot_rates[T] = spot_rate
    
    def __calculate_forward_rate___(self, T1, T2):
        R1 = self.spot_rates[T1]
        R2 = self.spot_rates[T2]
        forward_rate = (R2*T2 - R1*T1)/(T2 - T1)
        return forward_rate

    def get_forward_rates(self):
        periods = sorted(self.spot_rates.keys())
        for T2, T1 in zip(periods, periods[1:]):
            forward_rate = \
                self.__calculate_forward_rate___(T1, T2)
            self.forward_rates.append(forward_rate)

        return self.forward_rates

Using spot rates derived from our preceding yield curve, we get the  
following result:

>>> fr = ForwardRates()

>>> fr.add_spot_rate(0.25, 10.127)

>>> fr.add_spot_rate(0.50, 10.469)

>>> fr.add_spot_rate(1.00, 10.536)

>>> fr.add_spot_rate(1.50, 10.681)

>>> fr.add_spot_rate(2.00, 10.808)

>>> print fr.get_forward_rates()

[10.810999999999998, 10.603, 10.971, 11.189]
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Calling the get_forward_rates method of the ForwardRates class returns a list of 
forward rates, starting from the next time period.

Calculating the yield to maturity
The yield to maturity (YTM) measures the interest rate, as implied by the bond,  
that takes into account the present value of all the future coupon payments and  
the principal. It is assumed that bond holders can invest received coupons at the 
YTM rate until the maturity of the bond; according to risk-neutral expectations,  
the payments received should be the same as the price paid for the bond.

Let's take a look at an example of a 5.75 percent bond that will mature in 1.5 years 
with a par value of 100. The price of the bond is $95.0428 and coupons are paid  
semi-annually. The pricing equation can be stated as follows:

1 2 3

10095.0428
1 1 1

nT nT nT
c c c
y y y
n n n

+
= + +
     + + +     
     

Here, c is the coupon dollar amount paid at each time period, T  is the time period of 
payment in years, n is the coupon payment frequency, and y is the YTM that we are 
interested to solve. To solve for YTM is typically a complex process, and most bond 
YTM calculators use Newton's method as an iterative process.

The bond YTM calculator is illustrated by the following Python code. Save this file  
as bond_ytm.py:

""" Get yield-to-maturity of a bond """
import scipy.optimize as optimize

def bond_ytm(price, par, T, coup, freq=2, guess=0.05):
    freq = float(freq)
    periods = T*freq
    coupon = coup/100.*par/freq
    dt = [(i+1)/freq for i in range(int(periods))]
    ytm_func = lambda(y): \
        sum([coupon/(1+y/freq)**(freq*t) for t in dt]) + \
        par/(1+y/freq)**(freq*t) - price
        
    return optimize.newton(ytm_func, guess)
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Remember that we covered the use of Newton's method and other nonlinear 
function root solvers in Chapter 3, Nonlinearity in Finance. For this YTM calculator 
function, we used the scipy.optimize package to solve for the YTM.

Using the parameters from the bond example, we get the following result:

>>> from bond_ytm import bond_ytm

>>> ytm = bond_ytm(95.0428, 100, 1.5, 5.75, 2)

>>> print ytm

0.0936915534524

The YTM of the bond is 9.369 percent. Now we have a bond YTM calculator that can 
help us compare a bond's expected return with those of other securities.

Calculating the price of a bond
When the YTM is known, we can get back the bond price in the same way we used 
the pricing equation investigated earlier. Save the code as bond_price.py:

""" Get bond price from YTM """
def bond_price(par, T, ytm, coup, freq=2):
    freq = float(freq)
    periods = T*freq
    coupon = coup/100.*par/freq
    dt = [(i+1)/freq for i in range(int(periods))]
    price = sum([coupon/(1+ytm/freq)**(freq*t) for t in dt]) + \
            par/(1+ytm/freq)**(freq*T)
    return price

Plugging in the same values from the earlier example, we get the following result:

>>> from bond_price import bond_price

>>> bond_price(100, 1.5, ytm, 5.75, 2)

95.0428

This gives us the same original bond price discussed in the earlier example. Using 
the bond_ytm and bond_price functions, we can use them for further uses in bond 
pricing, such as finding the bond's modified duration and convexity. These two 
characteristics of bonds are of importance to bond traders to help them formulate 
various trading strategies and hedge the risk.
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Bond duration
Duration is a sensitivity measure of bond prices to yield changes. Some duration 
measures are: effective duration, Macaulay duration, and modified duration. 
The type of duration that we will discuss is modified duration, which measures 
the percentage change in bond price with respect to a percentage change in yield 
(typically 1 percent or 100 basis points (bps)).

The higher the duration of a bond, the more sensitive it is to yield changes. 
Conversely, the lower the duration of a bond, the less sensitive it is to yield changes.

The modified duration of a bond can be thought of as the first derivative of the 
relationship between price and yield:

( )( )02
P Pmodified duration
P dY

− +−
≅

Here, dy is the given change in yield, P− is the price of the bond from a decrease in 
yield by dy, P+ is the price of the bond from an increase in yield by dy, and 0P  is the 
initial price of the bond.

It should be noted that the duration describes the linear price-yield relationship for a 
small change in Y. Because the yield curve is not linear, using a large value of dy does 
not approximate the duration measure well.

The implementation of the modified duration calculator is given in the following 
Python code. The bond_mod_duration function uses the bond_ytm function as 
discussed earlier in this chapter to determine the yield of the bond with the given 
initial value. Also, it uses the bond_price function to determine the price of the bond 
with the given change in yield:

""" Calculate modified duration of a bond """
from bond_ytm import bond_ytm
from bond_price import bond_price

def bond_mod_duration(price, par, T, coup, freq, dy=0.01):
    ytm = bond_ytm(price, par, T, coup, freq)
    
    ytm_minus = ytm - dy    
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    price_minus = bond_price(par, T, ytm_minus, coup, freq)
    
    ytm_plus = ytm + dy
    price_plus = bond_price(par, T, ytm_plus, coup, freq)
    
    mduration = (price_minus-price_plus)/(2*price*dy)
    return mduration 

We can find out the modified duration of the 5.75 percent bond discussed earlier that 
will mature in 1.5 years with a par value of 100 and a bond price of 95.0428:

>>> from bond_mod_duration import bond_mod_duration

>>> print bond_mod_duration(95.04, 100, 1.5, 5.75, 2, 0.01)

1.392

The modified duration of the bond is 1.392 years.

Bond convexity
Convexity is the sensitivity measure of the duration of a bond to yield changes. 
Think of convexity as the second derivative of the relationship between the price  
and yield:

( )( )
0

2
0

2P P Pconvexity
P dY

− ++ −
≅

Bond traders use convexity as a risk management tool to measure the amount of 
market risk in their portfolio. Higher convexity portfolios are less affected by interest 
rate volatilities than lower convexity portfolio, given the same bond duration and 
yield. As such, higher convexity bonds are more expensive than lower convexity 
ones, everything else being equal.

The implementation of a bond convexity is given as follows:

""" Calculate convexity of a bond """
from bond_ytm import bond_ytm
from bond_price import bond_price

def bond_convexity(price, par, T, coup, freq, dy=0.01):
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    ytm = bond_ytm(price, par, T, coup, freq)

    ytm_minus = ytm - dy    
    price_minus = bond_price(par, T, ytm_minus, coup, freq)
    
    ytm_plus = ytm + dy
    price_plus = bond_price(par, T, ytm_plus, coup, freq)
    
    convexity = (price_minus+price_plus-2*price)/(price*dy**2)
    return convexity

We can now find the convexity of the 5.75 percent bond discussed earlier that will 
mature in 1.5 years with a par value of 100 and a bond price of 95.0428:

>>> from bond_convexity import bond_convexity

>>> print bond_convexity(95.0428, 100, 1.5, 5.75, 2)

2.63395939033

The convexity of the bond is 2.63. For two bonds with the same par value, coupon, 
and maturity, their convexity may be different, depending on its location on the yield 
curve. Higher convexity bonds will exhibit higher price changes for the same change 
in yield.

Short-rate modeling
In short-rate modeling, the short rate r(t) is the spot rate at a particular time. It 
is described as a continuously compounded, annualized interest rate term for an 
infinitesimally short period of time on the yield curve. The short rate takes on the 
form of a stochastic variable in interest rate models, where the interest rates may 
change by small amounts at every point of time. Short rate models attempt to model 
the evolution of interest rates over time, and hopefully describe the economic 
conditions at certain periods.

Short-rate models are frequently used in the evaluation of interest rate derivatives. 
Bonds, credit instruments, mortgages, and loan products are sensitive to interest rate 
changes. Short-rate models are used as interest rate components in conjunction with 
pricing implementations, such as numerical methods, to help price such derivatives.
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Interest rate modeling is considered a fairly complex topic since interest rates are 
affected by a multitude of factors, such as economic states, political decisions, 
government intervention, and laws of demand and supply. A number of interest rate 
models have been proposed to account for various characteristics of interest rates.

In this section, we will take a look at some of the most commonly used one-factor 
short rate models used in financial studies, namely, the Vasicek model, Cox-
Ingersoll-Ross model, Rendleman and Bartter model, and Brennan and Schwartz 
model. Using Python, we will perform a one-path simulation to obtain a general 
overview of the interest rate path process. Other models commonly discussed in 
finance include the Ho-Lee model, Hull-White model, and Black-Karasinki model.

The Vasicek model
In the one-factor Vasicek model, the short rate is modeled as a single stochastic factor:

( ) ( )( ) ( )dr t K r t dt dW tθ σ= − +

Here, K , θ , and σ  are constants, and σ  is the instantaneous standard deviation. ( )W t  
is the random Wiener process. The Vasicek follows an Ornstein-Uhlenbeck process, 
where the model reverts around the mean θ  with K , the speed of mean reversion. As 
a result, the interest rates may become negative, which is an undesirable property in 
most normal economic conditions.

To help understand this model, the following Python code generates a list of  
interest rates:

""" Simulate interest rate path by the Vasicek model """
import numpy as np

def vasicek(r0, K, theta, sigma, T=1., N=10, seed=777):    
    np.random.seed(seed)
    dt = T/float(N)    
    rates = [r0]
    for i in range(N):
        dr = K*(theta-rates[-1])*dt + sigma*np.random.normal()
        rates.append(rates[-1] + dr)
    return range(N+1), rates 
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The vasicek function returns a list of time periods and interest rates from the 
Vasicek model. It takes in a number of input parameters: r0 is the initial rate of 
interest at t=0; K, theta, and sigma are constants; T is the period in terms of number 
of years; N is the number of intervals for the modeling process; and seed is the 
initialization value for NumPy's standard normal random number generator.

Assume that the current interest rate is 1.875 percent, K is 0.2, theta is 0.01, and 
sigma is 0.012. We will use a T value of 10 and N value of 200 to model the interest 
rates as follows:

>>> x, y = vasicek(0.01875, 0.20, 0.01, 0.012, 10., 200)

>>>

>>> import matplotlib.pyplot as plt

>>> plt.plot(x,y)

>>> plt.show()

After running the above commands, we will get the following output:

In this example, we will run just one simulation to observe what the interest rates 
from the Vasicek model will look like. As observed, the interest rates did become 
negative at some point and grew on an average at 0.01.
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The Cox-Ingersoll-Ross model
The Cox-Ingersoll-Ross (CIR) model is a one-factor model that was proposed  
to address the negative interest rates found in the Vasicek model. The process is 
given as:

( ) ( )( ) ( ) ( )dr t K r t dt r t dW tθ σ= − +

The term ( )r t  increases the standard deviation as the short rate increases.

Now the vasicek function can be rewritten as the CIR model in Python:

""" Simulate interest rate path by the CIR model """
import math
import numpy as np

def cir(r0, K, theta, sigma, T=1.,N=10,seed=777):
    np.random.seed(seed)
    dt = T/float(N)    
    rates = [r0]
    for i in range(N):
        dr = K*(theta-rates[-1])*dt + \
            sigma*math.sqrt(rates[-1])*np.random.normal()
        rates.append(rates[-1] + dr)
    return range(N+1), rates 

Using the same example given in the Vasicek section, assume that the current 
interest rate is 1.875 percent, K is 0.2, theta is 0.01, and sigma is 0.012. We will  
use a T value as 10 and N as 200 to model the interest rates as follows:

>>> x, y = cir(0.01875, 0.20, 0.01, 0.012, 10., 200)

>>>

>>> import matplotlib.pyplot as plt

>>> plt.plot(x,y)

>>> plt.show() 
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Here is the output for the preceding commands:

Observe that the CIR interest model does not have negative interest rate values.

The Rendleman and Bartter model
In the Rendleman and Bartter model, the short rate process is given as:

( ) ( ) ( ) ( )dr t r t dt r t dW tθ σ= +

Here, the instantaneous drift is ( )r tθ  with an instantaneous standard deviation 
( )r tσ . The Rendleman and Bartter model can be thought of as a geometric Brownian 

motion, akin to a stock price stochastic process that is log-normally distributed. This 
model lacks the property of mean reversion. Mean reversion is a phenomenon where 
the interest rates seem to be pulled back toward a long-term average level.
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The following Python code models the Rendleman and Bartter interest rate process:

""" Simulate interest rate path by the Rendleman-Barter model """
import numpy as np

def rendleman_bartter(r0, theta, sigma, T=1.,N=10,seed=777):        
    np.random.seed(seed)
    dt = T/float(N)    
    rates = [r0]
    for i in range(N):
        dr = theta*rates[-1]*dt + \
             sigma*rates[-1]*np.random.normal()
        rates.append(rates[-1] + dr)
    return range(N+1), rates

We will continue to use the example from the previous sections and compare the 
model. Assume that the current interest rate is 1.875 percent, theta is 0.01, and 
sigma is 0.012. We will use a T value as 10 and N as 200 to model the interest rates  
as follows:

>>> x, y = rendleman_bartter(0.01875, 0.01, 0.012, 10., 200)

>>>

>>> import matplotlib.pyplot as plt

>>> plt.plot(x,y)

>>> plt.show()

The following graph is the output for the preceding commands:
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In general, this model lacks the property of mean reversion and grows toward a 
long-term average level.

The Brennan and Schwartz model
The Brennan and Schwartz model is a two-factor model where the short-rate reverts 
toward a long rate as the mean, which also follows a stochastic process. The short-
rate process is given as:

( ) ( )( ) ( ) ( )dr t K t t dt r t dW tθ σ= − +

It can be seen that the Brennan and Schwartz model is another form of a geometric 
Brownian motion.

Our Python code can now be implemented as follows:

""" Simulate interest rate path by the Brennan Schwartz model """
import numpy as np

def brennan_schwartz(r0, K, theta, sigma, T=1., N=10, seed=777):    
    np.random.seed(seed)
    dt = T/float(N)    
    rates = [r0]
    for i in range(N):
        dr = K*(theta-rates[-1])*dt + \
            sigma*rates[-1]*np.random.normal()
        rates.append(rates[-1] + dr)
    return range(N+1), rates

Assume that the current interest rate is 1.875 percent, K is 0.2, theta is 0.01, and 
sigma is 0.012. We will use a T value as 10 and N as 10000 to model the interest rates 
as follows:

>>> x, y = brennan_schwartz(0.01875, 0.20, 0.01, 0.012, 10., 

...                         10000)

>>> 

>>> import matplotlib.pyplot as plt

>>> plt.plot(x,y)

>>> plt.show()
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After running the above commands, we will get the following output:

Bond options
When bond issuers, such as corporations, issue bonds, one of the risks they face 
is the interest rate risk. When interest rates decrease, bond prices increase. While 
existing bondholders will find their bonds more valuable, bond issuers, on the other 
hand, find themselves in a losing position since they will be issuing higher interest 
payments than the prevailing interest rate. Conversely, when interest rates increase, 
bond issuers are at an advantage since they are able to continue issuing the same low 
interest payments as agreed on the bond contract specifications.

To capitalize on interest rate changes, bond issuers may embed options within a 
bond. This allows the issuer the right, but not the obligation, to buy or sell the issued 
bond at a predetermined price during a specified period of time. An American type 
of bond option allows the issuer to exercise the rights of the option at any point of 
time during the lifetime of a bond. An European type of bond option allows the 
issuer to exercise the rights of the option at a specific date. The exact style of the 
date of exercise varies from bond option to bond option. Some issuers may choose 
to exercise the right of the bond option when the bond has been in circulation in the 
market for over a year. Some issuers may choose to exercise the bond option at one 
of several specific dates. Regardless of the exercise dates of the bond, you may price 
the bond with an embedded option as:

priceof bond priceof bond with nooption priceof embedded option= −
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The pricing of a bond with no option is fairly straightforward: the present value of 
the bond to be received at a future date, including all coupon payments. A number 
of assumptions are to be made on the theoretical interest rates into the future at 
which the coupon payments may be reinvested. One such assumption might be the 
movement of interest rates as implied by short rate models, which we have covered 
in the preceding section. Another assumption might be the movement of interest 
rates within a binomial or trinomial tree. For simplicity, in bond pricing studies,  
we will price zero-coupon bonds that will not issue coupons during the lifetime  
of the bond.

To price an option, you would have to determine available exercise dates. Starting 
from the future value of the bond, the bond price is compared against the exercise  
price of the option and traverses back to the present time using a numerical procedure, 
such as a binomial tree. This price comparison is performed at time points, where the 
bond option may be exercised. By the no-arbitrage theory, accounting for the present 
excess values of the bond when exercised, we obtain the price of the option. For 
simplicity, in bond pricing studies in the later sections of this chapter, we will treat  
the embedded option of zero-coupon bonds as an American option.

Callable bonds
In an economic condition where there are high interest rates, bond issuers are likely 
at risk of facing an interest rate decrease and having to continue with issuing higher 
interest payments than the prevailing interest rate. As such, they may choose to issue 
callable bonds. The callable bond contains an embedded agreement to redeem the 
bond at agreed dates. Existing bond holders are considered to have sold a call option 
to the bond issuer. In the event that the interest rates do fall and the corporation has 
the rights to exercise the option to buy back the bond during that period at a specific 
price, they may choose to do so. The company can then issue new bonds at lower 
interest rates. This also means that the company is able to raise more capital in the 
form of higher bond prices.
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Puttable bonds
Unlike callable bonds, the owner of puttable bonds has the right, but not the 
obligation, to sell the bond back to the issuer at an agreed price during a certain 
period. Owners of puttable bonds are considered to have bought a put option from 
the bond issuer. When interest rates increase, values of existing bonds become less 
valuable and puttable bond holders are more incentivized to exercise the right to 
sell the bond at a higher exercise price. Since puttable bonds are more beneficial 
to buyers than to the issuers, they are generally less common than callable bonds. 
Variants of puttable bonds can be found in the form of loan and deposition 
instruments. A customer who has placed a fixed-rate deposit with a financial 
institution receives interest payments on specified dates. They are entitled to 
withdraw the deposit at any time. As such, a fixed-rate deposit instrument can be 
thought of as a bond with an embedded American put option.

An investor who wishes to borrow money from a bank enters a loan agreement, 
making interest payments during the lifetime of the agreement until the debt, 
together with the principal amount and agreed interests, is fully repaid. The bank 
can be considered as buying a put option on a bond. Under certain circumstances, 
the bank may exercise the right to redeem the full value of the loan agreement.

Thus, the price of puttable bonds can be thought of as:

priceof putablebond priceof bond with nooption priceof put option= +

Convertible bonds
Convertible bonds are issued by companies and contain an embedded option that 
allows the holder to convert the bond into a number of shares of common stock.  
The amount of shares to be converted for a bond is defined as the conversion ratio, 
which is determined such that the dollar amount of shares is the same as the value  
of the bond.

Convertible bonds have similarities with callable bonds. They allow the bond holders 
to exercise the bond for an equivalent amount of shares at the specified conversion 
ratio at agreed times. Convertible bonds typically issue lower coupon rates than 
nonconvertible bonds, to compensate for the additional value of the right to exercise.

When convertible bond holders exercise their rights into stocks, the company's 
debts are reduced. On the other hand, the company's stocks become more diluted as 
the number of shares in the circulation increases, and the company's stock price is 
expected to fall.
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As the company's stock price increases, convertible bond prices tend to increase. 
Conversely, as the company's stock price decreases, convertible bond prices tend to 
decrease.

Preferred stocks
Preferred stocks are stocks that have bond-like qualities. Owners of preferred 
stocks have seniority of claim of dividend payments over common stocks, which 
are usually negotiated as a fixed percentage of their par value. Although there is no 
guarantee of dividend payments, all dividends are paid on preferred stock first over 
common stock. In certain agreements on preferred stocks, dividends that are not 
paid as agreed may accumulate until they are paid at a later time. These preferred 
stocks are known as cumulative.

Prices of preferred stocks typically move in tandem with their common stock. They 
may have voting rights associated with common shareholders. In the event of 
bankruptcy, preferred stocks have a first lien of its par value upon liquidation.

Pricing a callable bond option
In this section, we will take a look at pricing a callable bond. We assume that the 
bond to be priced is a zero-coupon paying bond with an embedded European call 
option. The price of a callable bond can be thought of as:

priceof callable bond priceof bond with nooption priceof call option= −

Pricing a zero-coupon bond by the Vasicek 
model
The value of a zero-coupon bond with a par value of 1 at time t and prevailing 
interest rate r is defined as:

( ) rdtP t e−=

Since the interest rate r is always changing, we will rewrite the zero-coupon  
bond as:

( ) ( )
T

t
r s ds

P t e
−∫=
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Now, the interest rate r is a stochastic process that accounts for the price of the bond 
from time t to T, where T is the time to maturity of the zero-coupon bond.

To model the interest rate r we can use one of the short rate models as discussed in 
this chapter as a stochastic process. For this purpose, we will use the Vasicek model 
to model the short rate process.

The expectation of a log-normally distributed variable X  is given by:

uX e=

[ ]
2

2
uuE X E e e

σ
+

 = = 

Taking moments of the log-normally distributed variable X:

2 2

2
ssusuE e e
σ

+
  = 

We obtained the expected value of a log-normally distributed variable, which we 
will use in the interest rate process for the zero-coupon bond.

Remember the Vasicek short-rate process model:

( ) ( )( ) ( )dr t K r t dt dW tθ σ= − +

Then, r(t) is derived as:

( ) ( )0 0

tkt kt ksr t r e e e dBθ θ σ− −= + − + ∫

Using the characteristic equation and the interest rate movements of the Vasicek 
model, we can rewrite the zero-coupon bond price in terms of expectations:

( ) ( )
l

t
r s ds

P t E e
− ∫=  

 

( ) ( ) ( )tr BP A e ττ τ −=



Chapter 5

[ 149 ]

Here: 
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The Python implementation of the zero-coupon bond price is given in the  
ExactZCB function:

import numpy as np

""" Get zero coupon bond price by Vasicek model """
def exact_zcb(theta, kappa, sigma, tau, r0=0.):
    B = (1 - np.exp(-kappa*tau)) / kappa
    A = np.exp((theta-(sigma**2)/(2*(kappa**2))) *
               (B-tau) - (sigma**2)/(4*kappa)*(B**2))
    return A * np.exp(-r0*B)

For example, we are interested in finding out the prices of zero-coupon bond prices 
for a number of maturities. We model the Vasicek short-rate process with a theta 
value of 0.5, kappa value of 0.02, sigma value of 0.02, and an initial interest rate r0 
of 0.015. Plugging these values into the ExactZCB function, we obtain zero-coupon 
bond prices, for the time period from 0 to 25 years with intervals of 0.5 years, and 
plot out the graph:

>>> Ts = np.r_[0.0:25.5:0.5]

>>> zcbs = [exact_zcb(0.5, 0.02, 0.03, t, 0.015) for t in Ts]

>>> 

>>> import matplotlib.pyplot as plt

>>> plt.title("Zero Coupon Bond (ZCB) Values by Time")

>>> plt.plot(Ts, zcbs, label='ZCB')

>>> plt.ylabel("Value ($)")

>>> plt.xlabel("Time in years")

>>> plt.legend()

>>> plt.grid(True)

>>> plt.show()
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The following graph is the output for the preceding commands:

Value of early-exercise
Issuers of callable bonds may redeem the bond at an agreed price as specified in  
the contract. To price such a bond, the discounted early-exercise values can be 
defined as:

rtdiscounted early exercise value ke−=

Here, k is the price ratio of the strike price to the par value and r  is the interest  
rate for the strike price.

The Python implementation of the early-exercise option can then be written  
as follows:

import math
def exercise_value(K, R, t):
    return K*math.exp(-R*t)
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In the preceding example, we are interested in valuing a call option with a strike 
ratio of 0.95 and an initial interest rate of 1.5 percent. We can then plot the values as 
a function of time and superimpose them onto a graph of zero-coupon bond prices to 
give us a better visual representation of the relationship between zero-coupon bond 
prices and callable bond prices:

>>> Ts = np.r_[0.0:25.5:0.5]

>>> Ks = [exercise_value(0.95, 0.015, t) for t in Ts]

    

>>> zcbs = [exact_zcb(0.5, 0.02, 0.03, t, 0.015) for t in Ts]

>>> import matplotlib.pyplot as plt

>>> plt.title("Zero Coupon Bond (ZCB) "

...           "and Strike (K) Values by Time")

>>> plt.plot(Ts, zcbs, label='ZCB')

>>> plt.plot(Ts, Ks, label='K', linestyle="--", marker=".")

>>> plt.ylabel("Value ($)")

>>> plt.xlabel("Time in years")

>>> plt.legend()

>>> plt.grid(True)

>>> plt.show()

Here is the output for the preceding commands:



Interest Rates and Derivatives

[ 152 ]

From the preceding graph, we can approximate the price of callable zero-coupon 
bond prices. Since the bond issuer owns the call, the price of the callable zero-coupon 
bond can be stated as:

( )min ,callable zerocouponbond price ZCB K=

This callable bond price is an approximation, given the current interest rate level. 
The next step would be to treat early-exercise by going through a form of policy 
iteration, which is a cycle used to determine optimum early-exercise values and their 
effect on other nodes, and check whether they become due for an early exercise. In 
practice, such an iteration only occurs once.

Policy iteration by finite differences
So far, we have used the Vasicek model in our short rate process for modeling a 
zero-coupon bond. We can undergo policy iteration by finite differences to check 
for early-exercise conditions and their effect on other nodes. We will use the implicit 
method of finite differences for the numerical pricing procedure, as discussed in 
Chapter 4, Numerical Procedures.

Let's create a class named VasicekCZCB that will incorporate all the methods used 
for implementing the pricing of callable zero-coupon bonds by the Vasicek model. 
The full Python code of this class can be found at the end of this section.

The methods used are as follows:

•	 vasicek_czcb_values(self, r0, R, ratio, T, sigma, kappa, theta, 
M, prob=1e-6, max_policy_iter=10, grid_struct_const=0.25, 
rs=None): This method is the point of entry to kick-start the pricing process. 
The variable r0 is the short-rate at time 0t = ; R is the strike zero rate for the 
bond price; ratio is the strike price per par value of the bond; T is the time to 
maturity; sigma is the volatility of the short rate r; kappa is the rate of mean 
reversion; theta is the mean of the short rate process; M is the number of 
steps in the finite differences scheme, prob is the probability on the normal 
distribution curve used by the vasicek_limits method to determine short 
rates; max_policy_iter is the maximum number of policy iterations used to 
find early-exercise nodes; grid_struct_const is the maximum threshold of 
dt movement that determines N in the calculate_N method; and rs is the 
list of interest rates from which the short rate process follows. This method 
returns a list of evenly spaced short rates and a list of option prices.
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•	 vasicek_params(self, r0, M, sigma, kappa, theta, T, prob, grid_
struct_const=0.25, rs=None): This method computes the implicit scheme 
parameters for the Vasicek model. It returns comma-separated values of r_
min, dr, N, and dt. If no value is supplied to rs, values of r_min to r_max will 
be automatically generated by the vasicek_limits method as a function of 
prob following a normal distribution.

•	 vasicek_limits(self, r0, sigma, kappa, theta, T, prob=1e-6): 
This method computes the minimum and maximum of the Vasicek interest 
rate process by a normal distribution process. The expected value of the short 
rate process r(t) under the Vasicek model is given as:

( ) ( )0
ktE r t r eθ θ −= + −  

The variance is defined as:

( ) ( )
2
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2

ktVar r t e
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The function returns a tuple of the minimum and maximum interest rate 
level as defined by the probability for the normal distribution process.

•	 vasicek_diagonals(self, sigma, kappa, theta, r_min, dr, N, 
dtau): This method returns the diagonals of the implicit scheme of finite 
differences, where:
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The boundary conditions are implemented using Neumann  
boundary conditions.
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•	 check_exercise(self, V, eex): This method returns a list of Boolean 
values, indicating the indices suggesting optimum payoff from an  
early exercise.

•	 exercise_call_price(self, R, ratio, tau): This method returns the 
discounted value of the strike price as a ratio.

•	 vasicek_policy_diagonals(self, subdiagonal, diagonal, 
superdiagonal, v_old, v_new, eex): This method is used by the policy 
iteration procedure that updates the sub-diagonals, diagonals, and super 
diagonals for one iteration. In indices, where an early exercise is carried out, 
the sub-diagonals and super diagonals will have these values set to 0 and 
the remaining values on the diagonal. The method returns comma-separated 
values of the new sub-diagonal, diagonal, and super-diagonal values.

•	 iterate(self, subdiagonal, diagonal, superdiagonal, v_old, 
eex, max_policy_iter=10): This method performs the implicit scheme of 
finite differences by performing a policy iteration, where each cycle involves 
solving the tridiagonal systems of equations, calling the vasicek_policy_
diagonals method to update the three diagonals, and returns the callable 
zero-coupon bond price if there are no further early-exercise opportunities.  
It also returns the number of policy iterations performed.

•	 tridiagonal_solve(self, a, b, c, d): This method is the 
implementation of the Thomas algorithm for solving tridiagonal  
systems of equations. The systems of equations may be written as:

1 1i i i i i i i ia x b x c a x d− ++ + =

This equation is represented in matrix form:
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Here, a is a list for the sub-diagonals, b is a list for the diagonal, and c is the 
super diagonal of the matrix.
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With these methods defined, we can now run our code and price a callable zero-
coupon bond by the Vasicek model.

The implementation of the VasicekCZCB class in Python is given as follows:

""" Price a callable zero coupon bond by the Vasicek model """
import math
import numpy as np
import scipy.stats as st

class VasicekCZCB:
    
    def __init__(self):
        self.norminv = st.distributions.norm.ppf
        self.norm = st.distributions.norm.cdf        

    def vasicek_czcb_values(self, r0, R, ratio, T, sigma, kappa,
                            theta, M, prob=1e-6,  
max_policy_iter=10,
                            grid_struct_const=0.25, rs=None):
        r_min, dr, N, dtau = \
            self.vasicek_params(r0, M, sigma, kappa, theta,
                                T, prob, grid_struct_const, rs)
        r = np.r_[0:N]*dr + r_min
        v_mplus1 = np.ones(N)

        for i in range(1, M+1):
            K = self.exercise_call_price(R, ratio, i*dtau)
            eex = np.ones(N)*K
            subdiagonal, diagonal, superdiagonal = \
                self.vasicek_diagonals(sigma, kappa, theta,
                                       r_min, dr, N, dtau)
            v_mplus1, iterations = \
                self.iterate(subdiagonal, diagonal, superdiagonal,
                             v_mplus1, eex, max_policy_iter)
        return r, v_mplus1

    def vasicek_params(self, r0, M, sigma, kappa, theta, T,
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                       prob, grid_struct_const=0.25, rs=None):
        (r_min, r_max) = (rs[0], rs[-1]) if not rs is None \
            else self.vasicek_limits(r0, sigma, kappa,
                                     theta, T, prob)
        dt = T/float(M)
        N = self.calculate_N(grid_struct_const, dt,
                             sigma, r_max, r_min)
        dr = (r_max-r_min)/(N-1)
        return r_min, dr, N, dt

    def calculate_N(self, max_structure_const, dt,
                    sigma, r_max, r_min):
        N = 0
        while True:
            N += 1
            grid_structure_interval = dt*(sigma**2)/(
                ((r_max-r_min)/float(N))**2)
            if grid_structure_interval > max_structure_const:
                break

        return N

    def vasicek_limits(self, r0, sigma, kappa,
                       theta, T, prob=1e-6):
        er = theta+(r0-theta)*math.exp(-kappa*T)
        variance = (sigma**2)*T if kappa==0 else \
                    (sigma**2)/(2*kappa)*(1-math.exp(-2*kappa*T))
        stdev = math.sqrt(variance)
        r_min = self.norminv(prob, er, stdev)
        r_max = self.norminv(1-prob, er, stdev)
        return r_min, r_max

    def vasicek_diagonals(self, sigma, kappa, theta,
                          r_min, dr, N, dtau):
        rn = np.r_[0:N]*dr + r_min
        subdiagonals = kappa*(theta-rn)*dtau/(2*dr) - \
                       0.5*(sigma**2)*dtau/(dr**2)
        diagonals = 1 + rn*dtau + sigma**2*dtau/(dr**2)
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        superdiagonals = -kappa*(theta-rn)*dtau/(2*dr) - \
                         0.5*(sigma**2)*dtau/(dr**2)

        # Implement boundary conditions.
        if N > 0:
            v_subd0 = subdiagonals[0]
            superdiagonals[0] = superdiagonals[0] - \
                                subdiagonals[0]
            diagonals[0] += 2*v_subd0
            subdiagonals[0] = 0

        if N > 1:
            v_superd_last = superdiagonals[-1]
            superdiagonals[-1] = superdiagonals[-1] - \
                                 subdiagonals[-1]
            diagonals[-1] += 2*v_superd_last
            superdiagonals[-1] = 0

        return subdiagonals, diagonals, superdiagonals

    def check_exercise(self, V, eex):
        return V > eex

    def exercise_call_price(self, R, ratio, tau):
        K = ratio*np.exp(-R*tau)
        return K

    def vasicek_policy_diagonals(self, subdiagonal, diagonal,
                                 superdiagonal, v_old, v_new,  
eex):
        has_early_exercise = self.check_exercise(v_new, eex)
        subdiagonal[has_early_exercise] = 0
        superdiagonal[has_early_exercise] = 0
        policy = v_old/eex
        policy_values = policy[has_early_exercise]
        diagonal[has_early_exercise] = policy_values
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        return subdiagonal, diagonal, superdiagonal

    def iterate(self, subdiagonal, diagonal, superdiagonal,
                v_old, eex, max_policy_iter=10):
        v_mplus1 = v_old
        v_m = v_old
        change = np.zeros(len(v_old))
        prev_changes = np.zeros(len(v_old))

        iterations = 0
        while iterations <= max_policy_iter:
            iterations += 1

            v_mplus1 = self.tridiagonal_solve(subdiagonal,  
diagonal,
                                              superdiagonal,  
v_old)
            subdiagonal, diagonal, superdiagonal = \
                self.vasicek_policy_diagonals(subdiagonal,  
diagonal,
                                              superdiagonal,  
v_old,
                                              v_mplus1, eex)

            is_eex = self.check_exercise(v_mplus1, eex)
            change[is_eex] = 1

            if iterations > 1:
                change[v_mplus1 != v_m] = 1

            is_no_more_eex = False if True in is_eex else True
            if is_no_more_eex:
                break

            v_mplus1[is_eex] = eex[is_eex]
            changes = (change == prev_changes)

            is_no_further_changes = all((x == 1) for x in changes)
            if is_no_further_changes:



Chapter 5

[ 159 ]

                break

            prev_changes = change
            v_m = v_mplus1

        return v_mplus1, (iterations-1)

    def tridiagonal_solve(self, a, b, c, d):
        nf = len(a)  # Number of equations
        ac, bc, cc, dc = map(np.array, (a, b, c, d))  # Copy the  
array
        for it in xrange(1, nf):
            mc = ac[it]/bc[it-1]
            bc[it] = bc[it] - mc*cc[it-1] 
            dc[it] = dc[it] - mc*dc[it-1]

        xc = ac
        xc[-1] = dc[-1]/bc[-1]

        for il in xrange(nf-2, -1, -1):
            xc[il] = (dc[il]-cc[il]*xc[il+1])/bc[il]

        del bc, cc, dc  # Delete variables from memory

        return xc

Assume that we run this model with the parameters: r0 is 0.05, R is 0.05, ratio 
is 0.95, sigma is 0.03, kappa is 0.15, theta is 0.05, prob is 1e-6, M is 250, max_
policy_iter is 10, grid_struc_interval is 0.25, and we are interested in the 
values of the interest rates between 0 percent and 2 percent. The following Python 
code demonstrates this model for maturities of 1 year, 5 years, 7 years, 10 years, and 
20 years:

>>> r0 = 0.05

>>> R = 0.05

>>> ratio = 0.95

>>> sigma = 0.03

>>> kappa = 0.15
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>>> theta = 0.05

>>> prob = 1e-6

>>> M = 250

>>> max_policy_iter=10

>>> grid_struct_interval = 0.25

>>> rs = np.r_[0.0:2.0:0.1]

>>> 

>>> Vasicek = VasicekCZCB()

>>> r, vals = Vasicek.vasicek_czcb_values(r0, R, ratio, 1.,

...                                       sigma, kappa, theta,

...                                       M, prob, 

...                                       max_policy_iter,

...                                       grid_struct_interval, 

...                                       rs) 

>>> 

>>> import matplotlib.pyplot as plt

>>> plt.title("Callable Zero Coupon Bond Values by r")

>>> plt.plot(r, vals, label='1 yr')

>>>

>>> for T in [5., 7., 10., 20.]:

...    r, vals = \

...         Vasicek.vasicek_czcb_values(r0, R, ratio, T, 

...                                     sigma, kappa,

                                        theta, M, prob, 

...                                     max_policy_iter, 

...                                     grid_struct_interval, 

...                                     rs)

...     plt.plot(r, vals, label=str(T)+' yr',

...              linestyle="--", marker=".")

>>>

>>> plt.ylabel("Value ($)")

>>> plt.xlabel("r")

>>> plt.legend()

>>> plt.grid(True)

>>> plt.show()
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After running the preceding commands, you get the following output:

We obtained the theoretical values of pricing callable zero-coupon bonds for various 
maturities for various interest rates.

Other considerations in callable bond pricing
In pricing callable zero-coupon bonds, we used the Vasicek interest rate process to 
model interest rate movement with the aid of a normal distribution process. We have 
earlier demonstrated that the Vasicek model can produce negative interest rates, 
which may not be practical for most economic cycles. Quantitative analysts often 
use more than one model in derivative pricing to obtain realistic results as much 
as possible. The CIR and Hull-White models are some of the commonly discussed 
models in financial studies. The limitation on these models is that they involve only 
one factor, or a single source of uncertainty.

We also looked at the implicit scheme of finite differences for policy iteration of the 
early exercise. Another method of consideration is the Crank-Nicolson method of 
finite differences. Other methods include the Monte Carlo simulation for calibration 
of this model.
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Finally, we obtained a final list of short rates and callable bond prices. To infer a fair 
value of the callable bond for a particular short rate, interpolation of the list of bond 
prices is required. Often, the linear interpolation method is used. Other interpolation 
methods of consideration are the cubic and spline interpolation methods.

Summary
In this chapter, we focused on interest rate and related derivative pricing with Python. 
Most bonds, such as US Treasury bonds, pay a fixed amount of interest semi-annually, 
while other bonds may pay quarterly, or annually. It is a characteristic of bonds that 
their prices are closely related to current interest rate levels in an inversely related 
manner. The normal or positive yield curve, where long-term interest rates are higher 
than short-term interest rates, is said to be upward sloping. In certain economic 
conditions, the yield curve can be inverted and is said to be downward sloping.

A zero-coupon bond is a bond that pays no coupons during its lifetime, except  
on maturity when the principal or face value is repaid. We implemented a simple 
zero-coupon bond calculator in Python.

The yield curve can be derived from the short-term zero or spot rates of securities, 
such as zero-coupon bonds, T-bills, notes, and Eurodollar deposits using a 
bootstrapping process. Using Python, we used a lot of bond information to plot a 
yield curve, and derived forward rates, yield-to-maturity, and bond prices from the 
yield curve.

Two important metrics to bond traders are duration and convexity. Duration is a 
sensitivity measure of bond prices to yield changes. Convexity is the sensitivity 
measure of the duration of a bond to yield changes. We implemented calculations 
using the modified duration model and convexity calculator in Python.

Short rate models are frequently used in the evaluation of interest rate derivatives. 
Interest rate modeling is a fairly complex topic since they are affected by a multitude 
of factors, such as economic states, political decisions, government intervention, 
and the laws of supply and demand. A number of interest rate models have been 
proposed to account for various characteristics of interest rates. Some of the interest 
rate models we have discussed are the Vasicek model, CIR model, and Rendleman 
and Bartter model.
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Bond issuers may embed options within a bond to allow them the right, but not 
the obligation, to buy or sell the issued bond at a predetermined price during a 
specified period of time. The price of a callable bond can be thought of as the price 
difference of a bond without an option and the price of the embedded call option. 
Using Python, we took a look at pricing a callable zero-coupon bond by applying 
the Vasicek model to the implicit method of finite differences. This method is, 
however, just one of the many methods that quantitative analysts use in bond 
options modeling.

In the next chapter, we will explore analytics with Python and VSTOXX. 
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Interactive Financial Analytics 
with Python and VSTOXX

Investors use volatility derivatives to diversify and hedge their risk in equity and 
credit portfolios. Since long-term investors in equity funds are exposed to downside 
risk, volatility can be used as a hedge for the tail risk and replacement for the 
put options. In the United States, the Chicago Board Options Exchange (CBOE) 
Volatility Index (VIX) measures the short-term volatility implied by S&P 500 stock 
index option prices. Many people around the world use the VIX to measure the 
stock market volatility over the next 30-day period. In Europe, the EURO STOXX 50 
Volatility (VSTOXX) market index is based on the market prices of a basket of Euro 
STOXX 50 Index Options (OESX) and measures the implied market volatility over 
the next 30 days on the EURO STOXX 50 Index. For benchmark strategies utilizing 
the EURO STOXX 50 Index, the nature of its negative correlation with the VSTOXX 
presents a viable way of avoiding benchmark-rebalancing costs. The statistical nature 
of volatility allows traders to perform mean-reverting strategies, dispersion trading, 
and volatility spread trading, among others.

In this chapter, we will take a look at performing data analytics on the VSTOXX, 
EURO STOXX 50 Index, and OESX. The code presented here runs on the IPython 
Notebook, the interactive component of Python, to help us visualize data and study 
relationships between them.

In this chapter, we will discuss the following topics:

•	 Introduction to STOXX and the Eurex Exchange
•	 Introduction to the EURO STOXX 50 Index, VSTOXX, and VIX
•	 Gathering the EURO STOXX 50 Index and VSTOXX data with Python
•	 Using the urllib and lxml modules to read and traverse HTML data
•	 Understanding the file data format published by VSTOXX
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•	 Performing financial analytics on the EURO STOXX 50 Index and VSTOXX
•	 Gathering the OESX data from the Eurex website
•	 Studying the formula used in calculating the VSTOXX sub-indexes
•	 Calculating the VSTOXX sub-indexes using OESX
•	 Studying the formula used in calculating the VSTOXX main index
•	 Calculating the VSTOXX main index from the VSTOXX sub-indexes
•	 Analyzing the results between the calculated values and actual values

Volatility derivatives
The two most popular volatility indexes worldwide are the VIX and VSTOXX, which 
are available in the United States and Europe respectively. The VSTOXX is based 
on OESX that trades on the Eurex Exchange. The Eurex Exchange website provides 
comprehensive information on the VSTOXX sub-indices and historical data, which 
we can analyze. We begin by understanding the background of these products before 
performing financial analytics on them in the later sections of this chapter.

STOXX and the Eurex 
In the United States, the Dow Jones Industrial Average is one of the most widely 
watched stock market indexes, created of course by Dow Jones. In Europe, one such 
company is STOXX Limited.

Formed in 1997, STOXX Limited is headquartered in Zurich, Switzerland and 
calculates approximately 7,000 indices globally. As an index provider, it develops, 
maintains, distributes, and markets a comprehensive range of indices that are  
known to be strictly rule-based and transparent.

STOXX provides a number of equity indices in the categories: benchmark indices, 
blue-chip indices, dividend indices, size indices, sector indices, style indices, 
optimized indices, strategy indices, theme indices, sustainability indices, faith-based 
indices, smart beta indices, and calculation products.

The Eurex Exchange is a derivatives exchange in Frankfurt, Germany offering more 
than 1,900 products, including equity indices, futures, options, ETFs, dividends, 
bonds, and repos. Many of STOXX's products and derivatives trade on the Eurex.
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The EURO STOXX 50 Index
Designed by STOXX Limited, the EURO STOXX 50 Index is one of the most  
liquid stock indexes worldwide, serving many indices products listed on the Eurex.  
It was introduced on February 26 1998 and is made up of 50 blue-chip stocks from 
the 12 Eurozone countries: Austria, Belgium, Finland, France, Germany, Greece, 
Ireland, Italy, Luxembourg, the Netherlands, Portugal, and Spain. The EURO 
STOXX 50 Index futures and options contracts are available and traded on the Eurex 
Exchange. Recalculation of the index takes place typically every 15 seconds based  
on real-time prices.

The ticker symbol for the EURO STOXX 50 Index is SX5E. EURO STOXX 50 Index 
Options take on the ticker symbol OESX. We may come across these symbols when 
working with EURO STOXX 50 Index data in the later sections of this chapter.

The VSTOXX
The VSTOXX or EURO STOXX 50 Volatility is a class of volatility derivatives 
serviced by the Eurex Exchange. The VSTOXX market index is based on the market 
prices of a basket of OESX quoted at-the-money or out-of-the-money. It measures  
the implied market volatility over the next 30 days on the EURO STOXX 50 Index.

Volatility derivatives are tradable products whose payoff depends on the volatility  
of the underlying assets. Examples of such products are volatility swaps and 
variance swaps.

Investors use volatility derivatives for benchmark strategies utilizing the EURO 
STOXX 50 Index, the nature of its negative correlation with the VSTOXX presents 
a viable way of avoiding benchmark-rebalancing costs. The statistical nature of 
volatility allows traders to perform mean-reverting strategies, dispersion trading, 
and volatility spread trading, among others. Recalculation of the index takes place  
every 5 seconds.

The ticker symbol for the VSTOXX is V2TX. VSTOXX Options and VSTOXX Mini 
Futures based on the VSTOXX Index trades on the Eurex Exchange.

The VIX
Like the STOXX, the CBOE Volatility Index (VIX) measures the short-term volatility 
implied by S&P 500 stock index option prices. Many people around the world think 
of the VIX to be a popular measurement tool for the stock market volatility over the 
next 30-day period. The VIX recalculates every 15 seconds.

VIX Options and VIX Futures are based on the VIX and trades on the CBOE.
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Gathering the EUROX STOXX 50 Index 
and VSTOXX data
STOXX Limited publishes the historical daily end-of-day index prices on their website 
at http://www.stoxx.com/data/historical/historical_benchmark.html.

The "STOXX Europe 600 (all regions)" historical daily data can be obtained at 
http://www.stoxx.com/download/historical_values/hbrbcpe.txt under 
Benchmark Indices of the Historical Data category of the website. The EURO 
STOXX 50 Index can be found within this data file.

The VSTOXX historical daily data can be obtained at http://www.stoxx.com/
download/historical_values/h_vstoxx.txt. The EURO STOXX 50 Volatility  
link is found under Strategy Indices of the Historical Data category of the website.

The Python module urllib can be used to interact with the web resources through 
the urlretrieve function to download data from an external source onto our  
local disk.

The following Python code lets us download the required data text files onto our 
destination directory defined by the data_folder variable. In this example, the 
folder named data is used. If this folder does not exist in your working directory, 
create one now before running the codes:

from urllib import urlretrieve

url_path = 'http://www.stoxx.com/download/historical_values/'
stoxxeu600_url = url_path + 'hbrbcpe.txt'
vstoxx_url = url_path + 'h_vstoxx.txt'

data_folder = 'data/'  # Save file to local target destination.

stoxxeu600_filepath = data_folder + "stoxxeu600.txt"
vstoxx_filepath = data_folder + "vstoxx.txt" 

Now, we will run the following command to download the STOXX Europe 600 Index 
data file:

>>> urlretrieve(stoxxeu600_url, stoxxeu600_filepath)

('data/stoxxeu600.txt', <httplib.HTTPMessage instance at 0x105b47290>)

We can do the same to download the VSTOXX data file:

>>> urlretrieve(vstoxx_url, vstoxx_filepath)

('data/vstoxx.txt', <httplib.HTTPMessage instance at 0x105c764d0>)

http://www.stoxx.com/data/historical/historical_benchmark.html
http://www.stoxx.com/download/historical_values/hbrbcpe.txt
http://www.stoxx.com/download/historical_values/h_vstoxx.txt
http://www.stoxx.com/download/historical_values/h_vstoxx.txt
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To check whether our data has been downloaded successfully to our hard disk, run 
the following command:

>>> import os.path

>>> os.path.isfile(stoxxeu600_filepath)

True

>>> os.path.isfile(vstoxx_filepath)

True

That's right, the file now exists in our directory. Otherwise, the output will be False.

With the STOXX Europe 600 data file in hand, let's see what the first five lines of the 
text file might look like:

>>> with open(stoxxeu600_filepath, 'r') as opened_file:

...     for i in range(5):

...         print opened_file.readline(),

Price Indices - EURO Currency

Date    ;Blue-Chip;Blue-Chip;Broad    ; Broad   ;Ex UK    ;Ex Euro 
Zone;Blue-Chip; Broad

        ;  Europe ;Euro-Zone;Europe   ;Euro-Zone;         ;            ; 
Nordic  ; Nordic

        ;  SX5P   ;  SX5E   ;SXXP     ;SXXE     ; SXXF    ;    SXXA    ;    
DK5F ; DKXF

31.12.1986;775.00 ;  900.82 ;   82.76 ;   98.58 ;   98.06 ;   69.06 ;  
645.26  ;  65.56

From the previous output, we can see that semicolons separate the data in the 
STOXX Europe 600 text file. In the last of the top four rows of information lie our 
headers of interest, being Date, SX5P, SX5E, SXXP, SXXE, SXXF, SXXA, DK5F, and DKXF. 
With this information, we can begin to parse the data with pandas into a DataFrame 
object, as explained in the following code:

import pandas as pd

columns = ['Date', 'SX5P', 'SX5E', 'SXXP', 'SXXE',
           'SXXF', 'SXXA', 'DK5F', 'DKXF', 'EMPTY']
stoxxeu600 = pd.read_csv(stoxxeu600_filepath,
                 index_col=0,
                 parse_dates=True,                 
                 dayfirst=True,
                 header=None,
                 skiprows=4, 
                 names=columns,
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                 sep=';'
                 )  
del stoxxeu600['EMPTY']

Here, we added an extra EMPTY column to the account for the trailing semicolons 
found at certain rows in the data. The extra column information is deleted after  
the parsing is done.

The read_csv function is a nifty pandas function that parses and converts a file into 
a pandas DataFrame object. A DataFrame object is a two-dimensional data structure 
very much like a table. The extra arguments tells us to treat the first column values 
as date objects, ignore the top four rows, parse the data with semicolon separators, 
and introduce the column names as defined in our columns variable. The stoxx50 
variable now takes on the pandas DataFrame data type. To view more details about 
our new DataFrame object, we can use the info function of Pandas as follows:

>>> stoxxeu600.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 7189 entries, 1986-12-31 00:00:00 to 2014-11-17 00:00:00

Data columns (total 8 columns):

SX5P    7189 non-null float64

SX5E    7189 non-null float64

SXXP    7189 non-null float64

SXXE    7189 non-null float64

SXXF    7189 non-null float64

SXXA    7189 non-null float64

DK5F    7189 non-null float64

DKXF    7189 non-null float64

dtypes: float64(8)

The column definitions of the STOXX Europe 600 data file are given in the  
following table:

Abbreviation Benchmark index
SX5P STOXX Europe 50
SX5E Euro STOXX 50 Index 
SXXP STOXX Europe 600
SXXE EURO STOXX
SXXF STOXX Europe 600 ex UK
SXXA STOXX Europe 600 ex Eurozone
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Abbreviation Benchmark index
DK5F STOXX Nordic 30
DKXF STOXX Nordic

Now, let's do the same for the VSTOXX data file:

>>> with open(vstoxx_filepath, 'r') as opened_file:

...     for i in range(5):

...         print opened_file.readline(),

EURO STOXX 50 Volatility Indices,,,,,,,,,

,VSTOXX,Sub-Index 1M,Sub-Index 2M,Sub-Index 3M,Sub-Index 6M,Sub-Index  
9M,Sub-Index 12M,Sub-Index 18M,Sub-Index 24M

Date,V2TX,V6I1,V6I2,V6I3,V6I4,V6I5,V6I6,V6I7,V6I8

04.01.1999,18.2033,21.2458,17.5555,31.2179,33.3124,33.7327,33.2232,31.853
5,23.8209

05.01.1999,29.6912,36.6400,28.4274,32.6922,33.7326,33.1724,32.8457,32.290
4,25.0532

From the preceding output information, we can see that the VSTOXX data file is 
slightly different from the STOXX Europe 600 data file. Data in the VSTOXX text file 
is separated by commas with the first two rows carrying the additional information, 
which we will discard.

In the same fashion, we will do the same for the STOXX Europe 600 data file. We will 
parse the VSTOXX data text file to a pandas DataFrame object:

vstoxx = pd.read_csv(vstoxx_filepath,
                 index_col=0, 
                 parse_dates=True, 
                 dayfirst=True,
                 header=2)

In the later sections of this chapter, we will read the VSTOXX data again. For easy 
access to the VSTOXX data, let's save the data file as a CSV file in the data folder  
of our working directory with the name vstoxx.csv:

>>> vstoxx.to_csv('data/vstoxx.csv')

The vstoxx variable is now a pandas DataFrame object type, and we can use the 
info function of pandas to peek at its properties:

>>> print vstoxx.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 4046 entries, 1999-01-04 00:00:00 to 2014-11-17 00:00:00
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Data columns (total 9 columns):

V2TX    4046 non-null float64

V6I1    3625 non-null float64

V6I2    4046 non-null float64

V6I3    3995 non-null float64

V6I4    4046 non-null float64

V6I5    4046 non-null float64

V6I6    4031 non-null float64

V6I7    4046 non-null float64

V6I8    4035 non-null float64

dtypes: float64(9)

The column definitions of the VSTOXX data file are given in the following table:

Abbreviation Index
V2TX The actual EURO STOXX 50 Volatility values
V6I1 VSTOXX 1 month
V6I2 VSTOXX 2 months
V6I3 VSTOXX 3 months
V6I4 VSTOXX 6 months
V6I5 VSTOXX 9 months
V6I6 VSTOXX 12 months
V6I7 VSTOXX 18 months
V6I8 VSTOXX 24 months

Merging the data
Since the earliest dates in the text files are 31.12.1986 and 04.01.1999 for the 
STOXX Europe 600 and VSTOXX data file respectively, we will require both the 
datasets to begin from a common date at 04.01.1999. We will also use values from 
the SX5E and V2TX columns to retrieve our EURO STOXX 50 Index and VSTOXX 
historical data values. The following Python code extracts these values into a new 
Pandas DataFrame object:

import datetime as dt

cutoff_date = dt.datetime(1999, 1, 4)
data = pd.DataFrame(
{'EUROSTOXX' :stoxxeu600['SX5E'][stoxxeu600.index >= cutoff_date],
 'VSTOXX':vstoxx['V2TX'][vstoxx.index >= cutoff_date]})
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Now, let's take a look at our DataFrame information:

>>> print data.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 4072 entries, 1999-01-04 00:00:00 to 2014-11-18 00:00:00

Data columns (total 2 columns):

EUROSTOXX    4071 non-null float64

VSTOXX       4046 non-null float64

dtypes: float64(2)

Also, let's take a look at the top five lines of our new DataFrame object:

>>> print data.head(5)

            EUROSTOXX   VSTOXX

Date                          

1999-01-04    3543.10  18.2033

1999-01-05    3604.67  29.6912

1999-01-06    3685.36  25.1670

1999-01-07    3627.87  32.5205

1999-01-08    3616.57  33.2296

Financial analytics of SX5E and V2TX
Another nifty function of pandas is the describe function that gives us a summary 
statistics of every value inside each column of the Pandas DataFrame object:

>>>  print data.describe()

         EUROSTOXX       VSTOXX

count  4072.000000  4048.000000

mean   3254.538183    25.305428

std     793.191950     9.924404

min    1809.980000    11.596600

25%    2662.460000    18.429500

50%    3033.880000    23.168600

75%    3753.542500    28.409550

max    5464.430000    87.512700

[8 rows x 2 columns]
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Pandas allows the values in the DataFrame object to be visualized as a graph using 
the plot function. Let's plot the EURO STOXX 50 and VSTOX to see how they look 
like over the years:

>>> from pylab import *

>>> data.plot(subplots=True,

...           figsize=(10, 8),          

...           color="blue",

...           grid=True)

>>> show()

Populating the interactive namespace from numpy and matplotlib

array([<matplotlib.axes.AxesSubplot object at 0x10f4464d0>,         
<matplotlib.axes.AxesSubplot object at 0x10f4feed0>], dtype=object)
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Perhaps we might be interested in the daily returns of both the indexes. The diff 
method returns the set of differences between the prior period values. A histogram 
can be used to give us a rough sense of the data density estimation over a bin interval 
of 100:

>>> data.diff().hist(figsize=(10, 5),

...                  color='blue',

...                  bins=100)

array([[<matplotlib.axes.AxesSubplot object at 0x11083d910>,          
<matplotlib.axes.AxesSubplot object at 0x110f3f7d0>]], dtype=object)
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The same effect can also be achieved with the pct_change function that gives us the 
percentage change over the prior period values:

>>> data.pct_change().hist(figsize=(10, 5),

...                        color='blue',

...                        bins=100)

array([[<matplotlib.axes.AxesSubplot object at 0x11132b810>,          
<matplotlib.axes.AxesSubplot object at 0x111ef1f90>]], dtype=object)

For quantitative analysis of returns, we are interested in the logarithm of daily 
returns. Why use log returns over simple returns? There are several reasons, but  
the most important of them is normalization, and this avoids the problem of  
negative prices.

We can use the shift function of pandas to shift the values by a certain number of 
periods. The dropna function removes the unused values at the end of the logarithm 
calculation transformation. The log function of NumPy helps you calculate the 
logarithm of all values in the DataFrame object as a vector and will be stored in 
the log_returns variable as a DataFrame object. The logarithm values can then be 
plotted in the same way as we did earlier, to give us a graph of daily log returns. 
Here is the code to plot the logarithm values:

>>> from pylab import *

>>> import numpy as np

>>>
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>>> log_returns = np.log(data / data.shift(1)).dropna()

>>> log_returns.plot(subplots=True,

...                  figsize=(10, 8),    

...                  color='blue',

...                  grid=True)

>>> show()

Populating the interactive namespace from numpy and matplotlib 

array([<matplotlib.axes.AxesSubplot object at 0x11553f1d0>,         
<matplotlib.axes.AxesSubplot object at 0x117c15990>], dtype=object)

Correlation between SX5E and V2TX
We can use the corr function to derive the correlation values between each column 
of values in the pandas DataFrame object, as in the following Python example:

>>> print log_returns.corr()

           EUROSTOXX    VSTOXX

EUROSTOXX   1.000000 -0.732545
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VSTOXX     -0.732545  1.000000

[2 rows x 2 columns]

At -0.7325, the EURO STOXX 50 Index is negatively correlated with the STOXX. To 
help us better visualize this relationship, we can plot both the sets of the daily log 
return values as a scatter plot. The statsmodels.api module is used to obtain the 
ordinary least squares regression line between the scattered data:

>>> import statsmodels.api as sm

>>>

>>> log_returns.plot(figsize=(10,8),

...                  x="EUROSTOXX", 

...                  y="VSTOXX",

...                  kind='scatter')

>>>

>>> ols_fit = sm.OLS(log_returns['VSTOXX'].values, 

...             log_returns['EUROSTOXX'].values).fit()

>>>

>>> plot(log_returns['EUROSTOXX'], ols_fit.fittedvalues, 'r')

[<matplotlib.lines.Line2D at 0x117704550>]
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The downward-sloping regression line, as shown in the preceding graph, confirms 
the negative correlation relationship between the EURO STOXX 50 and the  
VSTOXX indices.

The rolling_corr function of pandas computes the moving-window correlation 
between two time series over time. We will use a value of 252 to represent the 
number of trading days in the moving window to compute the annual rolling 
correlation, using the following commands:

>>> pd.rolling_corr(log_returns['EUROSTOXX'], 

...                  log_returns['VSTOXX'], 

...                  window=252).plot(figsize=(10,8))

>>> plt.ylabel('Rolling Annual Correlation')

<matplotlib.text.Text at 0x118feb810>

It can be seen from the preceding graph that the EURO STOXX 50 Index and 
VSTOXX are negatively correlated during the entire lifetime of the indices  
using 252 trading days per year.
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Calculating the VSTOXX sub-indices
The VSTOXX data file vstoxx.txt, which we downloaded earlier, consists of eight 
sub-indexes that represent the calculated volatility index from the EURO STOXX 
50 options that expire in 1, 2, 3, 6, 9, 12, 18, and 24 months. The VSTOXX Index 
represents the volatility outlook for the next 30 days, and it is the option series  
with the nearest expiry date over the next 30 days that is taken into account for  
the calculation of the VSTOXX Index.

To help us examine the movement of the VSTOXX Index, we would need to study 
the movement of its component sub-index. To do so, we would need to refer to the 
OESX calls and put prices listed in the Eurex Exchange.

Getting the OESX data
The Eurex Exchange website contains the daily historical call and put options prices 
for the past 30 days. Unfortunately, there is no direct method of downloading and 
obtaining the data directly. A Python utility function is needed to scrape data off the 
web page and store it in a pandas DataFrame object for our analysis. The data can be 
obtained from 

http://www.eurexchange.com/exchange-en/market-data/statistics/market-
statistics-online.

http://www.eurexchange.com/exchange-en/market-data/statistics/market-statistics-online
http://www.eurexchange.com/exchange-en/market-data/statistics/market-statistics-online
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A screenshot of the option prices web page is given as follows:

In the Market statistics (online) page, navigate to Equity Index Derivatives, then 
Blue Chip. Click on OESX. Some key information is presented on this page. Firstly, 
the drop-down box contains a list of available dates to choose from. Secondly, it 
contains the last updated date and time of the prices on the page. Thirdly, it contains 
a table that shows the option of the expiry month for the selected date. Selecting 
an option type and expiry month brings us to a page containing a table of the daily 
option prices.
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The following screenshot shows the call prices for the selected date. The put prices 
are contained in a separate link:

The table contains comprehensive information about the option prices. The two 
columns that we are interested in are Strike price and Daily settlem. price. From the 
values of these two columns, we can then derive the hypothetical sub-index value for 
the chosen expiry month.

Formulas to calculate the VSTOXX sub-index
The STOXX Strategy Index Guide is available on the STOXX website at http://www.
stoxx.com/download/indices/rulebooks/stoxx_strategy_guide.pdf. This 
document contains details on the formulas used to calculate its indexes in the  
Eurex system.

The value of the VSTOXX sub-index is given as:
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iT  is the time to maturity of the ith  OESX instrument in terms of seconds, and 365T  is 
the number of seconds in a 365-day year.

http://www.stoxx.com/download/indices/rulebooks/stoxx_strategy_guide.pdf
http://www.stoxx.com/download/indices/rulebooks/stoxx_strategy_guide.pdf
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,0iK  is the highest strike price that does not exceed the forward price iF .

iF  is the forward at-the-money price calculated from the price of the ith  OESX expiry 
date, where the absolute difference between the call prices (C) and put prices (P) is 
the smallest and can be written as:

( )mini iC PF K R C P−= + −

Should multiple identical price differences exist, ,0iK  will be the closest strike price 
below the average of these forward prices.

,i jK∆  is the mean distance between the lower and upper strike prices of ,i jK . At the 
maximum and minimum strike price boundaries, ,i jK∆  is taken to be the difference 
of the highest and second highest strike price. This value can also be written as:
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iR  is the continuously compounded interest rate of the time remaining to maturity 
and can be written as:
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Here ir  is the interpolated interest rate available for the ith  OESX expiry date.

( ),i jM K  is the price of the out-of-the-money option. This value takes on the put prices 
for the strike prices below ,0iK  and call prices for the strike prices above ,0iK . At ,0iK , 
this value is the average of the sum of the call and put prices. This can also be  
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Implementation of the VSTOXX sub-index 
value
Let's create the classes that will help us read data from the Eurex web page, parse the 
data, calculate the sub-index values, and save them in a CSV file.

The OptionUtility class contains a number of utility methods that will help us 
perform the date and time conversion functions between strings and Python date 
objects. The various OptionUtility classes are explained as follows:

•	 The VSTOXXCalculator class contains the calculate_sub_index method 
that implements the formulas for calculating the sub-index for a particular 
option series.

•	 The EurexWebPage class contains methods for interacting with the data on 
the Eurex web page. The lxml Python module is required. It can be obtained 
at http://lxml.de.

•	 The VSTOXXSubIndex class contains the following methods for fetching the 
data and calculating the sub-indexes of an external file. The source code for 
all the classes are given at the end of this section:

°° __init__(self, path_to_subindexes): This method contains  
the initialization of object instances used throughout this class. The 
final output values are stored in a CSV file, which is indicated by  
the path_to_subindexes variable.

°° start(self, months=2, r=0.015): This is the main method 
to begin the process of downloading and calculating the data. 
By default, we are interested in calculating the sub-index, where 
the options expire in 2 months. An interest rate of 1.5 percent is 
assumed. A for loop is used to process each particular historical data 
iteratively. Using the print function within the for loop, helps us 
track our progress since it could take a while to read and calculate  
all the required sub-indexes.

°° calculate_and_save_sub_indexes(self, selected_date, 
months_fwd, r): This method takes in a date selected from the 
drop-down list and fetches the option series data for the next month 
onwards till the expiry month, which is given by the months_fwd 
variable. For every expiry month information fetched, the sub-index 
is calculated and saved in a CSV file.

http://lxml.de
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°° save_vstoxx_sub_index_to_csv(self, current_dt, sub_
index, month): This method saves a single sub-index value for a 
single expiry month for a single trading day in a CSV file in the form 
of a pandas DataFrame object. If the DataFrame object does not exist, 
one is created. Otherwise, the existing data is appended to DataFrame  
and saved.

°° get_data(self, current_dt, expiry_dt): This method fetches 
the call and put option series data separately, which is then combined 
into a single pandas DataFrame object. The dataset and the time of 
data, as shown in the web page, is returned.

To run the program, we simply call the start method to collect the historical option 
series data that expires in 2 months:

>>> vstoxx_subindex = VSTOXXSubIndex(

...     "data/vstoxx_sub_indexes.csv")

>>> vstoxx_subindex.start(2) 

Collecting historical data for 20141030 ... 

Collecting historical data for 20141031 ... 

Collecting historical data for 20141103 ...

…

Collecting historical data for 20141126 ... 

Completed.

The data will be saved in data/vstoxx_sub_indexes.csv in our working  
directory folder.

The following Python code is the full implementation of all the classes:

import calendar as cal
import datetime as dt

class OptionUtility(object):

    def get_settlement_date(self, date):
        """ Get third friday of the month """
        day = 21 - (cal.weekday(date.year, date.month, 1) + 2) % 7
        return dt.datetime(date.year, date.month, day, 12, 0, 0)

    def get_date(self, web_date_string, date_format):
        """  Parse a date from the web to a date object """
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        return dt.datetime.strptime(web_date_string, date_format)

    def fwd_expiry_date(self, current_dt, months_fws):
        return self.get_settlement_date(
            current_dt + relativedelta(months=+months_fws))

import math

class VSTOXXCalculator(object):

    def __init__(self):
        self.secs_per_day = float(60*60*24)
        self.secs_per_year = float(365*self.secs_per_day)

    def calculate_sub_index(self, df, t_calc, t_settle, r):
        T = (t_settle-t_calc).total_seconds()/self.secs_per_year
        R = math.exp(r*T)

        # Calculate dK
        df["dK"] = 0
        df["dK"][df.index[0]] = df.index[1]-df.index[0]
        df["dK"][df.index[-1]] = df.index[-1]-df.index[-2]
        df["dK"][df.index[1:-1]] = (df.index.values[2:]-
                                    df.index.values[:-2])/2
        # Calculate the forward price
        df["AbsDiffCP"] = abs(df["Call"]-df["Put"])
        min_val = min(df["AbsDiffCP"])
        f_df = df[df["AbsDiffCP"]==min_val]
        fwd_prices = f_df.index+R*(f_df["Call"]-f_df["Put"])
        F = np.mean(fwd_prices)

        # Get the strike not exceeding forward price
        K_i0 = df.index[df.index <= F][-1]

        # Calculate M(K(i,j))
        df["MK"] = 0
        df["MK"][df.index < K_i0] = df["Put"]
        df["MK"][K_i0] = (df["Call"][K_i0]+df["Put"][K_i0])/2.
        df["MK"][df.index > K_i0] = df["Call"]
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        # Apply the variance formula to get the sub-index
        summation = sum(df["dK"]/(df.index.values**2)*R*df["MK"])
        variance = 2/T*summation-1/T*(F/float(K_i0)-1)**2
        subindex = 100*math.sqrt(variance)
        return subindex

import urllib
from lxml import html

class EurexWebPage(object):

    def __init__(self):
        self.url = "%s%s%s%s%s" % (
            "http://www.eurexchange.com/",
            "exchange-en/market-data/statistics/",
            "market-statistics-online/180102!",
            "onlineStats?productGroupId=846&productId=19068",
            "&viewType=3")
        self.param_url = "&cp=%s&month=%s&year=%s&busDate=%s"
        self.lastupdated_dateformat = "%b %d, %Y %H:%M:%S"
        self.web_date_format = "%Y%m%d"
        self.__strike_price_header__ = "Strike price"
        self.__prices_header__ = "Daily settlem. price"
        self.utility = OptionUtility()

    def get_available_dates(self):
        html_data = urllib.urlopen(self.url).read()
        webpage = html.fromstring(html_data)

        # Find the dates available on the website
        dates_listed = webpage.xpath(
            "//select[@name='busDate']" +
            "/option")

        return [date_element.get("value")
                for date_element in reversed(dates_listed)]

    def get_date_from_web_date(self, web_date):
        return self.utility.get_date(web_date,
                                     self.web_date_format)
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    def get_option_series_data(self, is_call,
                               current_dt, option_dt):
        selected_date = current_dt.strftime(self.web_date_format)
        option_type = "Call" if is_call else "Put"
        target_url = (self.url +
                      self.param_url) % (option_type,
                                         option_dt.month,
                                         option_dt.year,
                                         selected_date)
        html_data = urllib.urlopen(target_url).read()
        webpage = html.fromstring(html_data)
        update_date = self.get_last_update_date(webpage)
        indexes = self.get_data_headers_indexes(webpage)
        data = self.__get_data_rows__(webpage,
                                      indexes,
                                      option_type)
        return data, update_date

    def __get_data_rows__(self, webpage, indexes, header):
        data = pd.DataFrame()
        for row in webpage.xpath("//table[@class='dataTable']/" +
                                 "tbody/tr"):
            columns = row.xpath("./td")
            if len(columns) > max(indexes):
                try:
                    [K, price] = \
                        [float(columns[i].text.replace(",",""))
                         for i in indexes]
                    data.set_value(K, header, price)
                except:
                    continue
        return data

    def get_data_headers_indexes(self, webpage):
        table_headers = webpage.xpath(
            "//table[@class='dataTable']" + \
            "/thead/th/text()")
        indexes_of_interest = [
            table_headers.index(
                self.__strike_price_header__),
            table_headers.index(
                self.__prices_header__)]
        return indexes_of_interest
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    def get_last_update_date(self, webpage):
        return dt.datetime.strptime(webpage.
                                    xpath("//p[@class='date']/b")
                                    [-1].text,
                                    self.lastupdated_dateformat)

import pandas as pd

from dateutil.relativedelta import relativedelta
import numpy as np
import thread

class VSTOXXSubIndex:
    
    def __init__(self, path_to_subindexes):
        self.sub_index_store_path = path_to_subindexes
        self.utility = OptionUtility()
        self.webpage = EurexWebPage()
        self.calculator = VSTOXXCalculator()
        self.csv_date_format = "%m/%d/%Y"

    def start(self, months=2, r=0.015):
        # For each date available, fetch the data
        for selected_date in self.webpage.get_available_dates():
            print "Collecting historical data for %s..." % \
                  selected_date
            self.calculate_and_save_sub_indexes(
                selected_date, months, r)

        print "Completed."
    
    def calculate_and_save_sub_indexes(self, selected_date, 
                                       months_fwd, r):
        current_dt = self.webpage.get_date_from_web_date(
            selected_date)

        for i in range(1, months_fwd+1):
            # Get settlement date of the expiring month
            expiry_dt = self.utility.fwd_expiry_date(
                current_dt, i)        
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            # Get calls and puts of expiring month
            dataset, update_dt = self.get_data(current_dt, 
                                               expiry_dt)                        
            if not dataset.empty:
                sub_index = self.calculator.calculate_sub_index(
                    dataset, update_dt, expiry_dt, r)
                self.save_vstoxx_sub_index_to_csv(
                    current_dt, sub_index, i)
            
    def save_vstoxx_sub_index_to_csv(self, current_dt, 
                                     sub_index, month):
        subindex_df = None
        try:
            subindex_df = pd.read_csv(self.sub_index_store_path, 
                                      index_col=[0])
        except:
            subindex_df = pd.DataFrame()
                        
        display_date = current_dt.strftime(self.csv_date_format)
        subindex_df.set_value(display_date, 
                              "I" + str(month), 
                              sub_index)
        subindex_df.to_csv(self.sub_index_store_path)
                    
    def get_data(self, current_dt, expiry_dt):
        """ Fetch and join calls and puts option series data """
        calls, dt1 = self.webpage.get_option_series_data(
            True, current_dt, expiry_dt)
        puts, dt2 = self.webpage.get_option_series_data(
            False, current_dt, expiry_dt)
        option_series = calls.join(puts, how='inner')            
        if dt1 != dt2:           
            print "Error: 2 different underlying prices."   
            
        return option_series, dt1

Analyzing the results
In the data folder of our working directory, we should have the following two files 
by now: vstoxx.csv and vstoxx_sub_indexes.csv. The sub-indexes file contains 
the computed values of the sub-index. Using the following Python code, we can plot 
the values of 2 months to expiry sub-index values:

import pandas as pd

vstoxx_sub_indexes = pd.read_csv('data/vstoxx_sub_indexes.csv', 
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                                 index_col=[0], 
                                 parse_dates=True, dayfirst=False)
vstoxx = pd.read_csv('data/vstoxx.csv', index_col=[0], 
                     parse_dates=True, dayfirst=False)

start_dt = min(vstoxx_sub_indexes.index.values)
vstoxx = vstoxx[vstoxx.index >= start_dt]

from pylab import *
new_pd = pd.DataFrame(vstoxx_sub_indexes["I2"])
new_pd = new_pd.join(vstoxx["V6I2"], how='inner')
new_pd.plot(figsize=(10, 6), grid=True)        

Let's compare these values of the 2 months to expiry option values to see how well 
our model performs:

>>> show()

Populating the interactive namespace from numpy and matplotlib

<matplotlib.axes.AxesSubplot at 0x10f090c10>

We can see that the calculated values tend to move in the same direction as the actual 
V6I2 values.



Interactive Financial Analytics with Python and VSTOXX

[ 192 ]

Calculating the VSTOXX main index
From the vstoxx.csv file saved earlier, we can use these values to calculate the 
VSTOXX index values. The formula to calculate the index is given as follows:

2 21 30 1 30
1 2

365 1 365 1

365
30

i i i i
i

i i i i

N N N N N NVSTOXX VSTOXX VSTOXX
N N N N N N

+ +

+ +

    − −
= +    − −    

Here,

365N  and 30N  is the number of seconds in one year and 30 days respectively.

iN  is the time left to the expiry of the nearest OESX in seconds.

1iN +  is the time left to the expiry of the second nearest OESX in seconds.

The implementation of the preceding formula is given in the calculate_vstoxx_
index method:

import math

def calculate_vstoxx_index(dataframe, col_name):    
    secs_per_day = float(60*60*24)
    utility = OptionUtility()
    
    for row_date, row in dataframe.iterrows():
        # Set each expiry date with an 
        # expiration time of 5p.m
        date = row_date.replace(hour=17)  
        
        # Ensure dates and sigmas are in legal range
        expiry_date_1 = utility.get_settlement_date(date)
        expiry_date_2 = utility.fwd_expiry_date(date, 1)
        days_diff = (expiry_date_1-date).days
        sigma_1, sigma_2 = row["V6I1"], row["V6I2"]        
        if -1 <= days_diff <= 1:
            sigma_1, sigma_2 = row["V6I2"], row["V6I3"]        
        if days_diff <= 1:
            expiry_date_1 = expiry_date_2
            expiry_date_2 = utility.fwd_expiry_date(date, 2)   
            
        # Get expiration times in terms of seconds
        Nti = (expiry_date_1-date).total_seconds()
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        Nti1 = (expiry_date_2-date).total_seconds()
        
        # Calculate index as per VSTOXX formula in seconds
        first_term = \
            (Nti1-30*secs_per_day)/ \
            (Nti1-Nti)*(sigma_1**2)*Nti/ \
            (secs_per_day*365)
        second_term = \
            (30*secs_per_day-Nti)/ \
            (Nti1-Nti)*(sigma_2**2)*Nti1/ \
            (secs_per_day*365)
        sub_index = math.sqrt(365.*(first_term+second_term)/30.)    
        dataframe.set_value(row_date, col_name, sub_index)
        
    return dataframe

Note that the function requires the use of the OptionUtility class discussed earlier 
to calculate the settlement date. Adjustments are made if the calculation date is one 
or less than one day to expiry. If the calculation date falls beyond the expiry date of 
the same month, the values of the following month are used.

To see how our calculated values can be compared to the VSTOXX actual values, 
we can take a sample from the VSTOXX data file and feed it into our calculate_
vstoxx_index function. The following Python code demonstrates this. Since the data 
file dates a long time back, we will just take a sample of the last 100 sub-index values:

>>> sample = vstoxx.tail(100)  # From the previous section

>>> sample = calculate_vstoxx_index(sample, "Calculated")

>>>

>>> vstoxx_df = sample["V2TX"]

>>> calculated_df = sample["Calculated"]

>>> df = pd.DataFrame({'VSTOXX' : sample["V2TX"],

...               'Calculated' : sample["Calculated"]})

>>>  df.plot(figsize=(10, 6), grid=True, style=['ro','b'])
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This gives us the following output:

<matplotlib.axes.AxesSubplot at 0x10c971f90>

The calculated values in red dots appear to be very close to the actual  
VSTOXX values.
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Summary
In this chapter, we looked at volatility derivatives and their uses by investors 
to diversify and hedge their risk in equity and credit portfolios. Since long-term 
investors in equity funds are exposed to downside risk, volatility can be used as a 
hedge for the tail risk and in replacement for the put options. In the United States, 
the CBOE Volatility Index (VIX) measures the short-term volatility implied by S&P 
500 stock index option prices. In Europe, the VSTOXX market index is based on the 
market prices of a basket of OESX and measures the implied market volatility over 
the next 30 days on the EURO STOXX 50 Index. Many people around the world  
use the VIX as a popular measurement tool for the stock market volatility over the 
next 30-day period. To help us better understand how the VSTOXX market index  
is calculated, we looked at its components and at formulas used in determining  
its value.

The STOXX and Eurex Exchange websites provide the historical daily data of the main 
index and its sub-indexes. To help us determine the relationship between the EURO 
STOXX 50 Index and VSTOXX, we downloaded this data with Python, merged them, 
and performed a variety of financial analytics. We came to the conclusion that they 
are negatively correlated. This relationship presents a viable way of avoiding frequent 
rebalancing costs by trading strategies based on benchmarking. The statistical nature 
of volatility allows volatility derivative traders to generate returns by utilizing mean-
reverting strategies, dispersion trading, and volatility spread trading, among others.

The VSTOXX consists of eight sub-indexes that represent the calculated volatility 
index from the EURO STOXX 50 Index options expiring in 1, 2, 3, 6, 9, 12, 18, and 
24 months. Since the VSTOXX index represents the volatility outlook for the next 
30 days, we gathered the OESX call and put prices from the Eurex website and 
calculated the sub-indexes for the 2 month forward expiry date.

Finally, we studied the component weighing formula of the VSTOXX sub-indexes 
and used Python to calculate the VSTOXX main index value to give us an estimate  
of the volatility outlook for the next 30 days.

In the next chapter, we will take a look at managing big data in finance with Python.
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Big Data with Python
With the advent of cloud computing technologies, big data has become increasingly 
commonplace. What is big data exactly and how can you work with big data to 
gather useful information? How different is big data from the kind of data we 
come across everyday? This chapter will specifically answer these questions and 
introduce you to the use of big data in finance. Big data tools provide the scalability 
and reliability of analyzing large volumes of data coming from multiple sources. 
In meeting these big data needs, Apache Hadoop became the primary choice for 
financial institutions and enterprises. As such, it is crucial for financial engineers  
to be familiar with Hadoop for financial applications.

As we begin to process large datasets, we also need to find an avenue to store this 
data. The de facto standard for relational database management was Structured 
Query Language (SQL). The nature of digital data is varied, and other means of 
storing data became the motivation for non-SQL products. One such nonrelational 
database mechanism is NoSQL, which stands for Not Only SQL. Besides being 
able to use SQL-like language for data management, NoSQL allows the storage 
of nonstructured data, such as key values, graphs, or documents. Because of its 
simplicity in design, it can also be said to be faster in certain circumstances. One area 
where NoSQL is used in finance is the storage of incoming tick data. This chapter 
will introduce you to the use of NoSQL for tick data storage.

In this chapter, we will cover the following topics:

•	 An introduction to big data, Apache Hadoop, and its components
•	 Getting Hadoop and running a QuickStart virtual machine
•	 Using the Hadoop HDFS file store
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•	 Performing a simple word count on an e-book using MapReduce  
with Python

•	 Testing the MapReduce program before running it on Hadoop
•	 Performing a MapReduce operation on the daily price changes of a stock
•	 Analyzing the results of the MapReduce operation with Python
•	 An introduction to NoSQL
•	 Getting and running MongoDB
•	 Getting and installing the PyMongo module for Python
•	 An introduction to databases and collections with PyMongo
•	 Insert, delete, find, and sort tick data with a NoSQL collection

Introducing big data
There has been a lot of excitement about big data and the kind of skills involved with 
it. Before beginning this chapter, it is important to define what big data is and how 
you can work with big data to gather useful information. How different is big data 
from the kind of data we come across everyday, say news stories, reports, literature, 
or even audio?

Big data is actually data captured at a high velocity, and it accumulates in such large 
quantities that it takes up terabytes or petabytes of storage. Common software tools 
are inadequate for capturing, processing, maintaining, and managing such data with 
a short period of tolerance. Analytical tools are applied on these large datasets to 
uncover the information and relationships that could possibly be used for forecasting 
or other analytical activities.

With the advent of cloud computing technologies, big data has become increasingly 
commonplace. Massive amounts of information can be stored in the cloud at lower 
costs. The move from relational databases to nonrelational solutions, such as NoSQL, 
allows nonstructured data to be captured at a more rapid rate. By performing 
data analytics on the captured information, companies are able to improve their 
operational efficiency, analyze patterns, run targeted marketing campaigns, and 
improve customer satisfaction.
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Financial sector companies are integrating big data analytics into their operations. 
Analytics are performed in real time on customer transactions to identify abnormal 
behavior and detect fraud. Customer records, spending habits, and even activities 
on social media sites can be used to promote products and services by customer 
segregation. Big data tools provide the scalability and reliability of analyzing big 
data in the area of risk and credit analytics, with the data coming in from multiple 
sources.

Hadoop for big data
Apache Hadoop is a 100 percent open source software framework used for two 
important fundamental tasks: storing and processing big data. It has been the leading 
big data tool for distributed parallel processing of data stored across multiple servers 
and is able to scale without limits. Because of its scalability, flexibility, fault tolerance, 
and low-cost features, many cloud-based solution vendors, financial institutions, and 
enterprises use Hadoop for their big data needs.

The Hadoop framework contains modules that are critical to its functions: the 
Hadoop Distributed File System (HDFS), Yet Another Resource Negotiator 
(YARN), and MapReduce (MapR).

HDFS
HDFS is a file system unique to Hadoop that is designed to be scalable and portable, 
and allows large amounts of file storage over multiple nodes in a Hadoop cluster 
spanning gigabytes or terabytes of data. Data in a cluster is split into smaller blocks 
of 128 Megabytes typically and distributed throughout the cluster. The MapReduce 
data processing functions are performed on smaller subsets of the larger datasets, 
thereby providing the scalability needed for big data processing. The HDFS file 
system uses TCP/IP socket communications to serve data over the network as one 
big file system.

YARN
YARN is a resource management and scheduling platform that manages the CPU, 
memory, and storage for applications running on a Hadoop cluster. It contains the 
components responsible for: allocating resources among applications running within 
the same cluster while obeying constraints, such as queue capacities and user limits; 
scheduling tasks based on the resource requirements of each application; negotiating 
appropriate resources from the scheduler; and tracking and monitoring progress of 
the running applications and their resource usage.
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MapReduce
MapReduce is the software programming paradigm of Hadoop used for processing 
and generating large datasets. For a developer, MapReduce is the probably the most 
important programming component in Hadoop. It is made up of two functions: map 
and reduce. The map function processes a key-value pair to generate an intermediate 
key-value pair. The reduce function merges all intermediate values with the same 
intermediate key and produces a result. MapReduce eliminates the need for moving 
data over the network to be processed by the software, and instead brings the 
processing software to the data.

MapReduce uses Java predominantly. Other languages, such as SQL and Python, can 
be implemented for MapReduce using the Hadoop streaming utility.

Is big data for me?
Perhaps you might be working on a file that is hundreds of megabytes in size, and 
your current data analysis tool is performing too slowly. Since big data typically 
involves terabytes or gigabytes worth of storage, you might be wondering, Is Apache 
Hadoop for me?

Note that Hadoop implements one general computation by mapping every single 
entity on your data, and then performing some reduction computation to add up 
the individual parts. You might be able to achieve the same grouping and counting 
function using programming languages, such as SQL and Python. In addition, 
writing the code allows you to express the computational flow more easily.

Or you might want to consider migrating your data analysis tools to pandas or R. 
They are very powerful and able to handle gigabytes of data when coded efficiently 
with no memory leaks. Most commercial SQL servers are up to the task. Besides, 
memory and storage costs are so affordable that you could be performing heavy 
computations on your local workstation.

If your data storage runs into terabytes, then you are out of luck. Without many 
choices left, Apache Hadoop and other alternative big data analysis tools such  
as Apache Spark seem to be your best hope for scalability, affordability, and  
fault-tolerance.
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Getting Apache Hadoop
The official page for Apache Hadoop is http://hadoop.apache.org. Here, you can 
find in-depth documentation, manuals, and releases of Apache Hadoop. Hadoop 
is written in Java and requires JVM installed on your single-node setup to run. It is 
supported on both GNU/Linux and Windows.

Since the purpose of this chapter is to get introduced to Python programming for 
Apache Hadoop, a quick way to get our hands on a complete Hadoop ecosystem 
would be most ideal. Cloud vendor Cloudera hosts a number of free QuickStart VMs 
that contain a single-node Apache Hadoop cluster, complete with sample scripts and 
ready links to help us dive straight into managing our cluster. The following sections 
describe how to get a Hadoop VM running on your machine.

Getting a QuickStart VM from Cloudera 
The download link to Hadoop QuickStart VMs from Cloudera is http://www.
cloudera.com/content/support/en/downloads/quickstart_vms.html. The VM 
image comes installed with the CentOS 6.4 Linux operating system and is available 
for VMWare, VirtualBox, and KVM virtual machine platforms. The version of the 
QuickStart VM that we will use is Quick Start VM with CDH 5.3.x. Let's choose the 
free and open source VirtualBox as our VM interface.

Since the VMs are 64-bit, they require a 64-bit host OS, and a virtualization platform 
that can support a 64-bit guest OS. The file size is 3 GB, and it requires 4 GB of RAM 
in the virtual machine.

Getting VirtualBox
VirtualBox runs on Windows, Linux, Macintosh, and Solaris hosts and supports a 
large number of guest operating systems, including but not limited to OpenSolaris, 
OS/2, and OpenBSD. The link to get VirtualBox is https://www.virtualbox.org/
wiki/Downloads.

http://hadoop.apache.org
http://www.cloudera.com/content/support/en/downloads/quickstart_vms.html
http://www.cloudera.com/content/support/en/downloads/quickstart_vms.html
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
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Running Cloudera VM on VirtualBox
The following steps describe how to get Cloudera's Hadoop VM running smoothly 
on VirtualBox:

1.	 Unzip the download package from Cloudera to a folder of your choice.
2.	 Open VirtualBox. From the menu bar, go to File, then select Import 

Appliance. Follow the steps to select the unzipped virtual machine from 
step 1. This will add the Cloudera VM image to the list of machines; it is 
compatible to run on VirtualBox:

3.	 Select the Cloudera QuickStart machine from the virtual machine list. Click 
on Settings. Go to System tab, and then click on the Motherboard tab. 
Ensure that you have at least 4096 MB of RAM selected:
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4.	 Go to the Processor tab. Ensure that you have at least two  
Processor(s) selected:

5.	 Go to the Acceleration tab, and ensure that all Hardware Virtualization 
checkboxes are selected.
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6.	 Go to Network options and ensure that Bridged Adapter is selected:

7.	 Click on OK to save the changes.
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8.	 On the same virtual machine, click on Start. This will start the CentOS virtual 
machine. It might take a few minutes to boot into the operating system:

With CentOS now running, we are automatically logged in as the cloudera user. 
We will do all the computations and scripting in this virtual machine. If required, 
the username and password credentials are both cloudera. This includes the sudo 
privileges for the root account, root MySQL, Hue, and Cloudera manager. The home 
directory is /home/cloudera/.
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A word count program in Hadoop
Perhaps the simplest way to get started with understanding programming for 
Hadoop is a simple word count functionality on a fairly large electronic book. The 
map program will read in every line of the text separated by a space or tab and 
return a key-value pair, which is by default assigned to a count of 1. The reduce 
program will read in all key-value pairs from the map program and sum up the 
number of similar words. Hadoop will produce an output file that contains a list  
of words in the book and the number of times the words have appeared.

Downloading sample data
Project Gutenberg hosts over 100,000 free e-books in HTML, EPUB, Kindle, and 
plain-text UTF-8 formats. For our testing with a sample e-book, let's use Ulysses by 
James Joyce. The link for the plain text UTF-8 file is http://www.gutenberg.org/
ebooks/4300.txt.utf-8. Using Firefox or any other web browser available in the 
CentOS virtual machine, you can download the file from the URL, and save it as 
pg4300.txt in the Downloads folder of our home directory, at /home/cloudera/
Downloads.

Once we have our target e-book downloaded onto our local drive, it is time to copy 
the e-book data in the Hadoop HDFS file store for processing. In the Terminal, run 
the following command:

[cloudera@quickstart ~]$ hadoop fs -copyFromLocal  
/home/cloudera/Downloads/pg4300.txt pg4300.txt 

This will copy the e-book to the Hadoop HDFS store with the same filename  
pg4300.txt.

To ensure that our copy operation is successful, use the hadoop fs –ls command  
to give us the following output:

[cloudera@quickstart ~]$ hadoop fs -ls  

Found 1 items -rw-r--r--   1 cloudera cloudera    1573150 2014-12-05  
22:26 pg4300.txt

The Hadoop file store shows that our file has been copied successfully.

http://www.gutenberg.org/ebooks/4300.txt.utf-8
http://www.gutenberg.org/ebooks/4300.txt.utf-8
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The map program
We will run the map program in Python on Hadoop. Insert the following code in a 
file named mapper.py so that we can use this later:

#!/usr/bin/python
import sys

for line in sys.stdin:
    for word in line.strip().split():
        print "%s\t%d" % (word, 1)

When mapper.py is executed, the interpreter will read in the input buffer that 
consists of text. All the text will be broken down by empty whitespace characters, 
and each word will be assigned to a count of 1, separated by a tab character.

A user-friendly text editor in CentOS is gedit. Create a new folder named  
word_count in your home directory and save the file in /home/cloudera/word_
count/mapper.py.

The mapper.py file needs to be recognized as an executable file in Linux. From the 
Terminal, run the following command:

chmod +x /home/cloudera/word_count/mapper.py

This will ensure that our map program can run without restrictions.

The reduce program
To create our reduce program, paste the following Python code into a text file named 
reduce.py, and place it in the same folder at /home/cloudera/word_count/ so that 
we can use this later:

#!/usr/bin/python
import sys

current_word = None
current_count = 1

for line in sys.stdin:
    word, count = line.strip().split('\t')
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    if current_word:
        if word == current_word:
            current_count += int(count)
        else:
            print "%s\t%d" % (current_word, current_count)
            current_count = 1

    current_word = word

if current_count > 1:
    print "%s\t%d" % (current_word, current_count)

The reduce program will read in all the key-value pairs from the map program. The 
current word and word count from the key-value pair is obtained by stripping off 
the tab character and comparing it with the previous occurrence of the word. Every 
similar occurrence increases the word count by one with the end result: printing the 
word itself and its count separated by the tab character.

Again, the reduce.py file needs to be recognized as an executable file in Linux. From 
the Terminal, run the following command:

chmod +x /home/cloudera/word_count/reduce.py

This will ensure that our reduce program can run without restrictions.

Testing our scripts
Before running our map and reduce program on Hadoop, we can run the scripts 
locally on our machine first to make sure everything works as intended. If we 
navigate to our word_count folder, we should see the following files:
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In the Terminal, run the following command on our mapper.py Python file:

[cloudera@quickstart ~]$ echo "foo foo quux labs foo bar quux" |  
/home/cloudera/word_count/mapper.py 

This will produce the following output:

foo    1 

foo    1 

quux    1 

labs    1 

foo    1 

bar    1 

quux    1 

As expected, our map program will issue a count of one to every word read into its 
input buffer, and print the results on each line.

In the Terminal, run the following command on our reduce.py Python file:

[cloudera@quickstart ~]$ echo "foo foo quux labs foo bar quux" |  
/home/cloudera/word_count/mapper.py | sort -k1,1 |  
/home/cloudera/word_count/reduce.py 

This will produce the following output:

bar    1 

foo    3 

labs    1 

quux    2 

Our reduce program sums up the number of similar words encountered by the map 
program, prints the results on each line, and sorts them in ascending order. It works 
as intended.

Running MapReduce on Hadoop
We are now ready to run our MapReduce operation on Hadoop. In the Terminal, 
type the following command:

hadoop jar \

/usr/lib/hadoop-0.20-mapreduce/contrib/streaming/hadoop-streaming-  
2.5.0-mr1-cdh5.3.0.jar \

-file /home/cloudera/word_count/mapper.py \
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-mapper /home/cloudera/word_count/mapper.py \

-file /home/cloudera/word_count/reduce.py \

-reducer /home/cloudera/word_count/reduce.py \

-input pg4300.txt \

-output pg4300-output

We will use the Hadoop Streaming utility to enable the use of Python scripts as the 
map and reduce operation. The Java JAR file for the Hadoop Streaming operation 
is assumed to be hadoop-streaming-2.5.0-mr1-cdh5.3.0.jar and is located in 
the folder at /usr/lib/hadoop-0.20-mapreduce/contrib/streaming/. On other 
systems, the Hadoop Streaming utility JAR file may be placed in a different folder 
or may use a different filename. The provided additional arguments will specify our 
input files, and the output directory that is required by the Hadoop operation.

Once the Hadoop operation starts, we should get an output similar to the following:

14/12/06 09:39:37 INFO client.RMProxy: Connecting to ResourceManager  
at /0.0.0.0:8032 

14/12/06 09:39:38 INFO client.RMProxy: Connecting to ResourceManager  
at /0.0.0.0:8032 

14/12/06 09:39:38 INFO mapred.FileInputFormat: Total input paths to  
process : 1 

14/12/06 09:39:38 INFO mapreduce.JobSubmitter: number of splits:2 

14/12/06 09:39:39 INFO mapreduce.JobSubmitter: Submitting tokens for  
job: job_1417846146061_0002 

14/12/06 09:39:39 INFO impl.YarnClientImpl: Submitted application  
application_1417846146061_0002 

14/12/06 09:39:39 INFO mapreduce.Job: The url to track the job:  
http://quickstart.cloudera:8088/proxy/application_1417846146061_0002/ 

14/12/06 09:39:39 INFO mapreduce.Job: Running job:  
job_1417846146061_0002 

14/12/06 09:39:46 INFO mapreduce.Job: Job job_1417846146061_0002  
running in uber mode : false 

14/12/06 09:39:46 INFO mapreduce.Job:  map 0% reduce 0% 

14/12/06 09:39:53 INFO mapreduce.Job:  map 50% reduce 0% 

A number of interesting things begin to happen in Hadoop. It tells us that the 
MapReduce operation can be tracked at http://quickstart.cloudera:8088/
proxy/application_1417846146061_0002/. It also tells us about the progress 
of the operation, which is currently at 50 percent, since it could take some time to 
process the whole book.
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When the operation is completed, the last few lines of the output contain more 
information of interest:

File Input Format Counters  

Bytes Read=1577103 

File Output Format Counters  

Bytes Written=527716 

14/12/06 09:40:03 INFO streaming.StreamJob: Output directory: pg4300-  
output 

It tells us that the MapReduce operation has completed successfully, and the results 
are written to our target output folder at pg4300-output. To verify this, we can take 
a peek at our HDFS file store:

[cloudera@quickstart ~]$ hadoop fs -ls 

Found 2 items 

drwxr-xr-x   - cloudera cloudera          0 2014-12-06 09:40 pg4300-  
output -

rw-r--r--   1 cloudera cloudera    1573150 2014-12-05 22:26  
pg4300.txt

We can see that a new folder has been added to our file store, which is one of our 
target output folders. Let's take a peek at the contents of this output folder:

[cloudera@quickstart ~]$ hadoop fs -ls pg4300-output 

Found 2 items

-rw-r--r--   1 cloudera cloudera          0 2014-12-06 09:40 pg4300-  
output/_SUCCESS 

-rw-r--r--   1 cloudera cloudera     527716 2014-12-06 09:40 pg4300-  
output/part-00000

Here, we can see that Hadoop churns out two files in our target folder. The _SUCCESS 
file is just an empty file that tells us that the MapReduce operation by Hadoop is 
successful. The second file, part-00000, contains the results of the reduce operation. 
We can inspect the output file with the fs –cat command:

[cloudera@quickstart ~]$ hadoop fs -cat pg4300-output/part-00000 

"Come	 1 

"Defects,"1 

"I1 
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"Information	 1 

"J"1 

"Plain	2 

"Project5 

"Right	1 

"Viator"1 

#4300]	1

The list of words is too long to be printed, but you get the idea.

Hue for browsing HDFS
Besides using the Terminal to navigate to the HDFS file store, another way of having 
a GUI interface to browse the HDFS file store for troubleshooting or invoking any 
other regular file operation is through the Hue web interface manager. Hue is also 
ideal for navigating large amounts of output information, such as viewing the full 
output of word counts.

Hue can be accessed from any web browser through the URL http://quickstart.
cloudera:8888/filebrowser/.

http://quickstart.cloudera:8888/filebrowser/
http://quickstart.cloudera:8888/filebrowser/
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The link to Hue is included in the quick links bookmark of Firefox. The File Browser 
hyperlink is located in the top-right section of the Hue web page.

Going deeper – Hadoop for finance
Now that we know how to use Hadoop to perform a simple word count on a fairly 
large text file, we can take a step further and use Hadoop for quantitative analysis. 
For a start, we can count the number of historical intraday percentage price changes 
of a stock.

Obtaining IBM stock prices from Yahoo! 
Finance
To obtain a dataset, we can use the historical stock prices available from Yahoo! 
Finance. Using Firefox or any web browser in your CentOS environment, you can 
download the historical daily prices for a stock counter as a CSV file using the 
following link 

http://ichart.finance.yahoo.com/table.csv?s=IBM

In this example, we will use IBM as our example stock. Download the file to the 
Downloads folder of your home directory and rename it as ibm.csv. If we take a look 
at the contents of the CSV file, the daily stock prices go all the way back to 1962.

Then run the following command in the Terminal to copy our target CSV file to the 
Hadoop HDFS file store:

[cloudera@quickstart /]$ hadoop fs -copyFromLocal  
/home/cloudera/Downloads/ibm.csv ibm.csv 

If we do a directory listing on the HDFS, we can see that our CSV file has been 
copied successfully:

[cloudera@quickstart /]$ hadoop fs -ls 

Found 4 items 

drwxr-xr-x   - cloudera cloudera          0 2014-12-06 15:01 .Trash 

-rw-r--r--   1 cloudera cloudera     685955 2014-12-06 14:53 ibm.csv 

drwxr-xr-x   - cloudera cloudera          0 2014-12-06 09:40 pg4300-  
output 

-rw-r--r--   1 cloudera cloudera    1573150 2014-12-05 22:26  
pg4300.txt 

http://ichart.finance.yahoo.com/table.csv?s=IBM
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Modifying the map program
Now all that we need to do is to create our map and reduce program to study the 
stock prices.

In our home directory, create a new folder called stock. We can copy the mapper.py 
and reduce.py files used in the previous section to this folder at /home/cloudera/
stock/.

Open mapper.py with gedit or any other text editor to begin editing our map 
program. We will use the following Python code:

#!/usr/bin/python 
import sys   
 
is_first_line = True 
for line in sys.stdin:  
   if is_first_line:   
      is_first_line = False   
      continue   
 
   row =  line.split(',')  
   open_price = float(row[1])  
   close_price = float(row[-3])  
   change = (open_price-close_price)/open_price * 100  
   change_text = str(round(change,1)) + "%"  
   print "%s\t%d" % (change_text, 1)

This will tell our map program to ignore the first line upon reading the CSV file since 
the top row contains redundant header information. The following rows contain the 
date, open, high, low, close, volume, and adjusted close prices separated by comma 
characters. We are interested in using the open and close prices to calculate the 
percentage change in the stock prices for the day. The program outputs the value  
to one decimal place with a default count of one, separated by a tab character.

We will reuse the same reduce program without any modifications. Ensure that the 
two files have the required permissions to run by issuing the following commands in 
the Terminal:

chmod +x /home/cloudera/stock/mapper.py

chmod +x /home/cloudera/stock/reduce.py
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Testing our map program with IBM stock 
prices
Before running our program in Hadoop, let's test our map program with the CSV 
data file we earlier downloaded with the following Unix command:

[cloudera@quickstart /]$ cat /home/cloudera/Downloads/ibm.csv |  
/home/cloudera/stock/mapper.py 

This will give us a long list of the daily price changes in percentage form. The 
following output is a snippet of the last few values of the output by the Terminal:

0.0%  1 

-0.7%  1 

1.8%  1 

1.8%  1 

1.0%  1 

-0.9%  1 

1.1%  1 

It seems like our map program output is very similar to the earlier word count  
map program.

Running MapReduce to count intraday price 
changes
Our map and reduce program is ready to run on Hadoop. The Unix command is 
similar to the one we used in the word count program, albeit with a few changes:

hadoop jar \

/usr/lib/hadoop-0.20-mapreduce/contrib/streaming/hadoop-streaming-  
2.5.0-mr1-cdh5.3.0.jar \

-file /home/cloudera/stock/mapper.py \

-mapper /home/cloudera/stock/mapper.py \

-file /home/cloudera/stock/reduce.py \

-reducer /home/cloudera/stock/reduce.py \

-input ibm.csv \

-output stock-output
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The Hadoop MapReduce operation will start running. When this has finished, we 
should get an output similar to the last few lines as follows:

Shuffle Errors   

BAD_ID=0 

CONNECTION=0 

IO_ERROR=0 

WRONG_LENGTH=0 

WRONG_MAP=0 

WRONG_REDUCE=0 

File Input Format Counters  

Bytes Read=687042 File Output Format Counters  

Bytes Written=1211 

14/12/06 16:46:00 INFO streaming.StreamJob: Output directory: stock-  
output 

As expected, the output results will be stored in the stock-output folder of the 
HDFS file store.

Before beginning to study the result for analysis, we need to copy the file from  
the HDFS file store to our local working folder. Run the following command in  
the Terminal:

[cloudera@quickstart /]$ hadoop fs -copyToLocal  stock-output/part-  
00000 /home/cloudera/stock/ 

The output file can be accessed from /home/cloudera/stock/part-000000 on our 
local drive.

Using Hue, we can view the output results as well:
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Performing analysis on our MapReduce 
results
Before we can display the graphs using Python in the CentOS environment, the 
matplotlib module needs to be installed. This is fairly easy. From the Terminal, run 
the following command:

sudo yum install python-matplotlib

It will take some time to download and install the required modules. Press y and 
the Enter key to install when prompted. Once completed, the matplotlib module is 
loaded into our Python environment.

The following code demonstrates a simple analysis by displaying the results onto a 
bar chart:

import matplotlib.pyplot as plt  

with open('/home/cloudera/stock/part-00000', 'rb') as f:  
   x, y = [], []   
   for line in f.readlines():   
      data = line.split()   
      x.append(float(data[0].strip('%')))   
      y.append(float(data[1]))   
    print "Max: ", max(x)  
    print "Min: ", min(x)  
    plt.bar(x, y, width=0.1)  
    plt.show()
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We will read each line of the output file and separate the results into lists of the x 
and y values, which are then fed into the bar function to be plotted as a graph using 
the matplotlib.pyplot module. The width parameter of the bar function helps 
you narrow down the width of the bar to a small value of 0.1 since we have too 
many bars to be displayed on the chart. We are also interested in the maximum and 
minimum values that the daily IBM stock price changes can get.

Save the Python code to a file, say analysis.py to the folder at /home/cloudera/
stock/. In the Terminal, run this Python file:

[cloudera@quickstart /]$ python /home/cloudera/stock/analysis.py

Max:  23.5 

Min:  -13.0 

We concluded that the maximum intraday price change for IBM was 23.5 percent 
at one time and a minimum of -13.0 percent. The intraday price change of IBM is 
distributed around the mean of 0.0 percent.
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Introducing NoSQL
Many cloud solution vendors offer storage facilities similar to the use of NoSQL 
by storing unstructured data in a document type of model. In this section, we will 
explore NoSQL as a means of storing financial data. There are also a number of  
open source databases available for free that support NoSQL.

Getting MongoDB
MongoDB is a free and open source document database written in C++. The official 
site for MongoDB is http://www.mongodb.org. MongoDB is available for Linux, 
Windows, Mac OS X, and Solaris. Head to http://www.mongodb.org/downloads to 
download and install MongoDB on your local workstation. MongoDB management 
services are typically added to your operating system's runtime environment 
when installation is complete and run from the command line. The documentation 
also includes instructions to get your mongod service started and running on your 
machine.

Creating the data directory and running 
MongoDB
Before starting MongoDB for the first time, a directory is needed where the mongod 
process will write data. The mongod process uses /data/db as the default directory.

Let's create the data directory in a folder of our choice. Ensure that the user account 
has the proper read and write privileges.

Running MongoDB from Windows
In Windows, open Command Prompt, and navigate to your working directory with 
the cd command. Then, create a folder with the following command:

$ md data\db

To run the mongod service, enter the following command:

$ c:\mongodb\bin\mongod.exe –dbpath c:\test\data\db

Here, it is assumed that the MongoDB installation files are located at c:\mongo, and 
our working directory is c:\test. Depending on how you specify the MongoDB 
installation, these paths could differ from yours.

http://www.mongodb.org
http://www.mongodb.org/downloads
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Running MongoDB from Mac OS X
If you are using Mac OS X, in Terminal navigate to your working directory with the 
dir command. Then, create a folder with the following command:

$ mkdir -p data/db

To run the mongod service, enter the following command:

mongod –dbpath data/db

For detailed instructions on running MongoDB suitable to your 
operating system's environment, please refer to the official 
documentation at http://docs.mongodb.org/manual.

We should get the last two lines of the output similar to the following:

Sun Dec  7 00:42:26.063 [websvr] admin web console waiting for  
connections on port 28017

Sun Dec  7 00:42:26.064 [initandlisten] waiting for connections on  
port 27017

This shows that our MongoDB has started successfully and accepts the connections 
on port 27017. The administrative web interface runs on port 28017 and can be 
accessed at http://localhost:28017.

Getting PyMongo
The PyMongo module contains tools to interact with the MongoDB database using 
Python. The official page for PyMongo is https://pypi.python.org/pypi/
pymongo/. This contains the installation instructions that are pretty much similar to 
installing a regular Python module on Windows, Linux, or Mac OS X. The simplest 
way to install PyMongo is to download the project source, unzip it to a folder on 
your local drive, use Terminal to navigate to this folder, and run python setup.py 
install to install it.

Alternatively, if you have pip installed, enter the following command in  
the Terminal:

$ pip install pymongo

http://docs.mongodb.org/manual
https://pypi.python.org/pypi/pymongo/
https://pypi.python.org/pypi/pymongo/
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Running a test connection
Let's do a simple connection check to ensure that our MongoDB service and PyMongo 
module are installed and running properly with the following Python script:

>>> import pymongo

>>> try:

...     client = pymongo.MongoClient("localhost", 27017)

...     print "Connected successfully!!!"

>>> except pymongo.errors.ConnectionFailure, e:

...    print "Could not connect to MongoDB: %s" % e

Connected successfully!!!

If the pymongo.MongoClient method call is successful, we should get the preceding 
output. Otherwise, ensure that the MongoDB service is running in the Terminal 
before executing this script again. Once connected, we can continue with some 
NoSQL operations.

Getting a database
Within a single data directory at data/db, we can create multiple independent 
databases. With the help of PyMongo, accessing databases can be done with just a 
single instance of MongoDB.

For example, if we want to have a database called ticks_db (which contains an 
underline character) to store some tick data, we can access this database with 
PyMongo using the style attributes as follows:

>>> ticks_db = client.ticks_db

If the database is named in such a way that style attributes are not supported,  
for example, ticks-db, the database can also be accessed as follows:

>>> ticks_db = client["ticks-db"]

Assigning variables, such as ticks_db = client.ticks-db 
will cause an error!
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Getting a collection
A collection is a group of documents, stored in a database, that are similar to tables 
in a relational database. A document accepts various input types described by 
the Binary JSON (BSON) specifications, including primitives such as strings and 
integers, arrays in the form of Python lists, binary strings in the form of UTF-8  
encoded-Unicode, ObjectId, which is an assigned unique identifier, as well as 
Python dictionaries as objects. Be aware that each document can contain up to 16 MB 
of data.

In this example, we are interested in the incoming tick data from the stock ticker 
AAPL. We can begin to store ticks within a collection named aapl:

>>> aapl_collection = ticks_db.aapl

Similar to accessing databases, should your collection be named with the style 
attributes that are not supported, say for example, aapl-collection, the collection 
can also be accessed as follows:

>>> aapl_collection = ticks_db["aapl-collection"]

Note that the collections and databases are created lazily. When objects are inserted 
into collections and databases that do not yet exist, one will be created.

Inserting a document
Assume that we have a working AAPL market tick data collection system available 
in Python, and we are interested in storing this data. We can structure the tick data 
as a Python dictionary and store the ticker name, the time received, the open, high, 
low, and last prices, as well as the total volume traded information. The following 
AAPL tick data is just an example of the hypothetical prices received at 10 AM:

import datetime as dt
tick = {"ticker": "aapl",
        "time": dt.datetime(2014, 11, 17, 10, 0, 0),
        "open": 115.58,
        "high": 116.08,
        "low": 114.49,
        "last": 114.96,
        "vol": 1900000}
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We simply use the insert function in the collection to insert a dictionary object. A 
unique key is generated by the insert function with a special field named _id: 

>>> tick_id = aapl_collection.insert(tick)

>>> print tick_id

548490486d3ba7178b6c36ba

After inserting our first document, the aapl collection will be created on the server. 
To verify this, we can list all of the collections in our database:

>>> print ticks_db.collection_names()

[u'system.indexes', u'aapl']

Fetching a single document
The most basic query for a document in a collection is the find_one function. Using 
this method, without any parameters, simply gives us the first match, or none if there 
are no matches. Otherwise, the parameter accepts a dictionary as the filter criteria. 
The following code contains some find_one examples that return the same result. 
Note that, in the last example, the ObjectId attribute needs to be converted from a 
string in order to access the _id field generated by the server:

>>> print aapl_collection.find_one()

>>> print aapl_collection.find_one({"time": dt.datetime(2014, 11, 17, \  
10, 0, 0)})

>>>

>>> from bson.objectid import ObjectId

>>> print aapl_collection.find_one({"_id": \

>>> ObjectId("548490486d3ba7178b6c36ba")})

{u'last': 114.96, u'vol': 1900000, u'open': 115.58, u'high': 116.08,  
u'low': 114.49, u'time': datetime.datetime(2014, 11, 17, 10, 0),  
u'_id': ObjectId('548490486d3ba7178b6c36ba'), u'ticker': u'aapl'}

{u'last': 114.96, u'vol': 1900000, u'open': 115.58, u'high': 116.08,  
u'low': 114.49, u'time': datetime.datetime(2014, 11, 17, 10, 0),  
u'_id': ObjectId('548490486d3ba7178b6c36ba'), u'ticker': u'aapl'}

{u'last': 114.96, u'vol': 1900000, u'open': 115.58, u'high': 116.08,  
u'low': 114.49, u'time': datetime.datetime(2014, 11, 17, 10, 0),  
u'_id': ObjectId('548490486d3ba7178b6c36ba'), u'ticker': u'aapl'}
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Deleting documents
The remove function removes the documents in the collection that matches  
the query:

>>> aapl_collection.remove()

Batch-inserting documents
For batch inserts, the insert function accepts a list of comma-separated dictionaries. 
We will add two more hypothetical tick prices for the next two minutes to our 
collection:

aapl_collection.insert([tick,
                       {"ticker": "aapl",
                        "time": dt.datetime(2014,11,17,10,1,0),
                        "open": 115.58,
                        "high": 116.08,
                        "low": 114.49,
                        "last": 115.00,
                        "vol": 2000000},
                       {"ticker": "aapl",
                        "time": dt.datetime(2014,11,17,10,2,0),
                        "open": 115.58,
                        "high": 116.08,
                        "low": 113.49,
                        "last": 115.00,
                        "vol": 2100000}])

Counting documents in the collection
The count function can be used on any query to count the number of matches. It can 
also be used in conjunction with the find function:

>>> print aapl_collection.count()

>>> print aapl_collection.find({"open": 115.58}).count()

3

3
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Finding documents
The find function is similar to the find_one function, except that it returns a list of 
documents for iteration. Without any parameters, the find function simply returns 
all the items in the collection:

>>> for aapl_tick in aapl_collection.find():

...    print aapl_tick

{u'last': 114.96, u'vol': 1900000, u'open': 115.58, u'high': 116.08,  
u'low': 114.49, u'time': datetime.datetime(2014, 11, 17, 10, 0),  
u'_id': ObjectId('5484943f6d3ba717ca0d26ff'), u'ticker': u'aapl'}

{u'last': 115.0, u'vol': 2000000, u'open': 115.58, u'high': 116.08,  
u'low': 114.49, u'time': datetime.datetime(2014, 11, 17, 10, 1),  
u'_id': ObjectId('5484943f6d3ba717ca0d2700'), u'ticker': u'aapl'}

{u'last': 115.0, u'vol': 2100000, u'open': 115.58, u'high': 116.08,  
u'low': 113.49, u'time': datetime.datetime(2014, 11, 17, 10, 2),  
u'_id': ObjectId('5484943f6d3ba717ca0d2701'), u'ticker': u'aapl'}

We can also filter our search on the collection of tick data. For example, we are 
interested in finding the two tick data that arrived before 10:02 AM:

>>> cutoff_time = dt.datetime(2014, 11, 17, 10, 2, 0)

>>> for tick in aapl_collection.find(

...        {"time": {"$lt": cutoff_time}}).sort("time"):

...    print tick 

{u'last': 114.96, u'vol': 1900000, u'open': 115.58, u'high': 116.08,  
u'low': 114.49, u'time': datetime.datetime(2014, 11, 17, 10, 0),  
u'_id': ObjectId('5484943f6d3ba717ca0d26ff'), u'ticker': u'aapl'}

{u'last': 115.0, u'vol': 2000000, u'open': 115.58, u'high': 116.08,  
u'low': 114.49, u'time': datetime.datetime(2014, 11, 17, 10, 1),  
u'_id': ObjectId('5484943f6d3ba717ca0d2700'), u'ticker': u'aapl'}

Sorting documents
In the find.sort example, we sorted our search results by time in ascending order. 
We can also do the same in descending order:

>>> sorted_ticks = aapl_collection.find().sort(

...     [("time", pymongo.DESCENDING)])

>>> for tick in sorted_ticks:

...     print tick 
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{u'last': 115.0, u'vol': 2100000, u'open': 115.58, u'high': 116.08,  
u'low': 113.49, u'time': datetime.datetime(2014, 11, 17, 10, 2),  
u'_id': ObjectId('548494f16d3ba717d882b83e'), u'ticker': u'aapl'}

{u'last': 115.0, u'vol': 2000000, u'open': 115.58, u'high': 116.08,  
u'low': 114.49, u'time': datetime.datetime(2014, 11, 17, 10, 1),  
u'_id': ObjectId('548494f16d3ba717d882b83d'), u'ticker': u'aapl'}

{u'last': 114.96, u'vol': 1900000, u'open': 115.58, u'high': 116.08,  
u'low': 114.49, u'time': datetime.datetime(2014, 11, 17, 10, 0),  
u'_id': ObjectId('548494f16d3ba717d882b83c'), u'ticker': u'aapl'}

Conclusion
Using the PyMongo module, we learned how to insert, delete, count, find, and sort 
tick data on a collection using three ticks' worth of data. Massive write performance, 
flexibility in the creation of collections, and fast key-value access are some virtues of 
NoSQL over SQL-based systems. As we continue on our journey in data collection and 
analysis, we can apply these basic methods to store a continuous stream of tick data for 
multiple tickers on various collections and databases. Although NoSQL databases may 
not be the only tick data storage solution available, and may sometimes be passed over 
for SQL solutions, as we have seen, they integrate nicely with Python and are easy to 
learn and use. The cross-platform and versatile MongoDB is one of the many NoSQL 
database products available to store documents in a data-interchangeable format such 
as the BSON format. Many cloud vendors offer data object storage in a JSON-like 
structure, similar to those we studied.

Summary
In this chapter, we were introduced to big data and its uses in finance. Big data tools 
provide the scalability and reliability of analyzing big data in the area of risk and 
credit analytics, handling data coming in from multiple sources. Apache Hadoop  
is one popular tool for financial institutions and enterprises in meeting these big  
data needs.

Apache Hadoop is an open source framework and written in Java. To help us get 
started quickly with Hadoop, we downloaded a QuickStart VM from Cloudera that 
comes with CentOS and Hadoop 2.0 running on VirtualBox. The main components 
in Hadoop are the HDFS file store, YARN, and MapReduce. We learned about 
Hadoop by writing a map and reduce program in Python to perform a word count 
on an e-book. Moving on, we downloaded a dataset of the daily prices of a stock and 
counted the number of percentage intraday price changes. The outputs were taken 
for further analysis.
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Before we begin to manage big data, we will need an avenue to store this data. 
The nature of digital data is varied, and other means of storing data became the 
motivation for non-SQL products. One non-relational database language is NoSQL. 
Because of its simple design, it can also be said to be faster in certain circumstances. 
One use of NoSQL for finance is the storage of incoming tick data.

We looked at obtaining MongoDB as our NoSQL database server, and the PyMongo 
module as a way of using Python to interact with MongoDB. After performing 
a simple test connection to the server with Python, we learned the concepts of 
databases and collections that are used to store data with PyMongo. Then, a few 
sample tick data were created and stored as a collection in the BSON format. 
We investigated how to delete, count, sort, and filter this tick data. These simple 
operations will enable us to begin storing data continuously and can be later 
retrieved for further analysis.

In the next chapter, we will take a look at developing an algorithmic trading system 
with Python.
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Algorithmic Trading
Algorithmic trading automates the systematic trading process, where orders are 
executed at the best price possible based on a variety of factors, such as pricing, 
timing, and volume. Some brokerage firms may offer an application programming 
interface (API) as part of their service offering to customers who wish to deploy 
their own trading algorithms. For developing an algorithmic trading system, it 
must be highly robust and handle any point of failure during the order execution. 
Network configuration, hardware, memory management and speed, and user 
experience are some factors to be considered when designing a system in executing 
orders. Designing larger systems inevitably add complexity to the framework.

As soon as a position in a market is opened, it is subjected to various types of 
risk, such as market risk. To preserve the trading capital as much as possible, it is 
important to incorporate risk management measures to the trading system. Perhaps 
the most common risk measure used in the financial industry is the value-at-risk 
(VaR) technique. We will discuss the beauty and flaws of VaR, and how it can be 
incorporated into our trading system that we will develop in this chapter.

In this chapter, we will cover the following topics:

•	 An overview of algorithmic trading
•	 List of brokers and system vendors with public API
•	 Choosing a programming language for a trading system
•	 Setting up API access on Interactive Brokers (IB) trading platform
•	 Using the IbPy module to interact with IB Trader WorkStation (TWS)
•	 Implementing a mean-reverting algorithmic trading strategy
•	 Setting up API access on OANDA with fxTrade Practice platform
•	 Using the oandapy module to interact with OANDA's REST API
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•	 Implementing a trend-following algorithmic trading strategy
•	 Introduction to VaR for risk management in our trading system
•	 Performing VaR calculation in Python with data from Yahoo! Finance

Introduction to algorithmic trading
In the 1990s, exchanges had already begun to use electronic trading systems. 
By 1997, 44 exchanges worldwide used automated systems for trading futures 
and options with more exchanges in the process of developing automated 
technology. Exchanges such as the Chicago Board of Trade (CBOT) and the 
London International Financial Futures and Options Exchange (LIFFE) used their 
electronic trading systems as an after-hours complement to traditional open outcry 
trading in pits, giving traders 24-hour access to the exchange's risk management 
tools. With improvements in technology, technology-based trading became less 
expensive, fueling the growth of trading platforms that are faster and powerful. 
Higher reliability of order execution and lower rates of message transmission error 
deepened the reliance of technology by financial institutions. The majority of asset 
managers, proprietary traders, and market makers have since moved from the 
trading pits to electronic trading floors.

As systematic or computerized trading became more commonplace, speed became 
the most important factor in determining the outcome of a trade. Quants utilizing 
sophisticated fundamental models are able to recompute fair values of trading 
products on the fly and execute trading decisions, enabling them to reap profits at 
the expense of fundamental traders using traditional tools. This gave way to the term 
high-frequency trading (HFT) that relies on fast computers to execute the trading 
decisions before anyone else can. HFT has evolved into a billion-dollar industry.

Algorithmic trading refers to the automation of the systematic trading process, 
where the order execution is heavily optimized to give the best price possible.  
It is not part of the portfolio allocation process.

Banks, hedge funds, brokerage firms, clearing firms, and trading firms typically 
have their servers placed right next to the electronic exchange to receive the latest 
market prices and to perform the fastest order execution where possible. They bring 
enormous trading volumes to the exchange. Anyone who wishes to participate in 
low-latency, high-volume trading activities, such as complex event processing or 
capturing fleeting price discrepancies, by acquiring exchange connectivity may do so 
in the form of co-location, where his or her server hardware can be placed on a rack 
right next to the exchange for a fee.
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The Financial Information Exchange (FIX) protocol is the industry standard for 
electronic communications with the exchange from the private server for direct 
market access (DMA) to real-time information. C++ is the common choice of 
programming language for trading over the FIX protocol, though other languages, 
such as .NET framework common language and Java can be used. Before creating 
an algorithmic trading platform, you would need to assess various factors, such as 
speed and ease of learning before deciding on a specific language for the purpose.

Brokerage firms would provide a trading platform of some sort to their customers for 
them to execute orders on selected exchanges in return for the commission fees. Some 
brokerage firms may offer an API as part of their service offering to technically inclined 
customers who wish to run their own trading algorithms. In most circumstances, 
customers may also choose from a number of commercial trading platforms offered by 
third-party vendors. Some of these trading platforms may also offer API access to route 
orders electronically to the exchange. It is important to read the API documentation 
beforehand to understand the technical capabilities offered by your broker and to 
formulate an approach in developing an algorithmic trading system.

List of trading platforms with public API
The following table lists some brokers and trading platform vendors who have their 
API documentation publicly available:

Broker/
vendor

URL Programming languages 
supported

Interactive 
Brokers

https://www.
interactivebrokers.com/en/
index.php?f=1325

C++, Posix C++, Java, and 
Visual Basic for ActiveX

E*Trade https://developer.etrade.com Java, PHP, and C++

IG http://labs.ig.com/ REST, Java, FIX, and Microsoft 
.NET Framework 4.0

Tradier https://developer.tradier.com Java, Perl, Python, and Ruby

TradeKing https://developers.tradeking.
com

Java, Node.js, PHP, R, and 
Ruby

Cunningham 
trading 
systems 

http://www.ctsfutures.com/
wiki/T4%20API%2040.MainPage.
ashx

Microsoft .NET Framework 4.0

https://www.interactivebrokers.com/en/index.php?f=1325
https://www.interactivebrokers.com/en/index.php?f=1325
https://www.interactivebrokers.com/en/index.php?f=1325
https://developer.etrade.com
http://labs.ig.com/
https://developer.tradier.com
https://developers.tradeking.com
https://developers.tradeking.com
http://www.ctsfutures.com/wiki/T4%20API%2040.MainPage.ashx
http://www.ctsfutures.com/wiki/T4%20API%2040.MainPage.ashx
http://www.ctsfutures.com/wiki/T4%20API%2040.MainPage.ashx
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Broker/
vendor

URL Programming languages 
supported

CQG http://cqg.com/Products/CQG-
API.aspx

C#, C++, Excel, MATLAB, and 
VB.NET

Trading 
technologies

https://developer.
tradingtechnologies.com

Microsoft .NET Framework 4.0

OANDA http://developer.oanda.com REST, Java, FIX, and MT4

Which is the best programming language 
to use?
With many choices of programming languages available to interface with brokers 
or vendors, the question that comes naturally to anyone starting out in algorithmic 
trading platform development is: which language should I use? 

Well, the short answer is that there is really no best programming language. How 
your product will be developed, the performance metrics to follow, the costs 
involved, latency threshold, risk measures, and the expected user interface are pieces 
of the puzzle to be taken into consideration. The risk manager, execution engine, 
and portfolio optimizer are some major components that will affect the design 
of your system. Your existing trading infrastructure, choice of operating system, 
programming language compiler capability, and available software tools poses 
further constraints on the system design, development, and deployment.

System functionalities
It is important to define the outcomes of your trading system. An outcome could 
be a research-based system that might be more concerned with obtaining high-
quality data from data vendors, performing computations or running models, and 
evaluating a strategy through signal generation. Part of the research component 
might include a data-cleaning module or a backtesting interface to run a strategy 
with theoretical parameters over historical data. The CPU speed, memory size, and 
bandwidth are factors to be considered while designing our system.

Another outcome could be an execution-based system that is more concerned with 
risk management and order handling features to ensure timely execution of multiple 
orders. The system must be highly robust and handle any point of failure during the 
order execution. As such, network configuration, hardware, memory management 
and speed, and user experience are some factors to be considered when designing a 
system in executing orders.

http://cqg.com/Products/CQG-API.aspx
http://cqg.com/Products/CQG-API.aspx
https://developer.tradingtechnologies.com
https://developer.tradingtechnologies.com
http://developer.oanda.com
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A system may contain one or more of these functionalities. Designing larger systems 
inevitably add complexity to the framework. It is recommended that you choose 
one or more programming languages that can address and balance the development 
speed, ease of development, scalability, and reliability of your trading system.

Algorithmic trading with Interactive 
Brokers and IbPy
In this section, we will build a working algorithmic trading platform that will 
authenticate with Interactive Brokers (IB) and log in, retrieve the market data, and 
send orders. IB is one of the most popular brokers in the trading community and has 
a long history of API development. There are plenty of articles on the use of the API 
available on the Web. IB serves clients ranging from hedge funds to retail traders. 
Although the API does not support Python directly, Python wrappers such as IbPy 
are available to make the API calls to the IB interface. The IB API is unique to its own 
implementation, and every broker has its own API handling methods. Nevertheless, 
the documents and sample applications provided by your broker would demonstrate 
the core functionality of every API interface that can be easily integrated into an 
algorithmic trading system if designed properly.

Getting Interactive Brokers' Trader 
WorkStation
The official page for IB is http://www.interactivebrokers.com. Here, you can find 
a wealth of information regarding trading and investing for retail and institutional 
traders. In this section, we will take a look at how to get the Trader WorkStation 
X (TWS) installed and running on your local workstation before setting up an 
algorithmic trading system using Python. Note that we will perform simulated 
trading on a demonstration account. If your trading strategy turns out to be profitable, 
head to the OPEN AN ACCOUNT section of the IB website to open a live trading 
account. Rules, regulations, market data fees, exchange fees, commissions, and other 
conditions are subjected to the broker of your choice. In addition, market conditions 
are vastly different from the simulated environment. You are encouraged to perform 
extensive testing on your algorithmic trading system before running on live markets.

http://www.interactivebrokers.com
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The following key steps describe how to install TWS on your local workstation, log 
in to the demonstration account, and set it up for API use:

1.	 From IB's official website, navigate to TRADING, then select Standalone 
TWS. Choose the installation executable that is suitable for your local 
workstation. TWS runs on Java; therefore, ensure that Java runtime plugin is 
already installed on your local workstation. Refer to the following screenshot:

2.	 When prompted during the installation process, choose Trader_
WorkStation_X and IB Gateway options. The Trader WorkStation X (TWS) 
is the trading platform with full order management functionality. The IB 
Gateway program accepts and processes the API connections without any 
order management features of the TWS. We will not cover the use of the IB 
Gateway, but you may find it useful later. Select the destination directory on 
your local workstation where TWS will place all the required files, as shown 
in the following screenshot:
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3.	 When the installation is completed, a TWS shortcut icon will appear together 
with your list of installed applications. Double-click on the icon to start the 
TWS program.

4.	 When TWS starts, you will be prompted to enter your login credentials. To 
log in to the demonstration account, type edemo in the username field and 
demouser in the password field, as shown in the following screenshot:

5.	 Once we have managed to load our demo account on TWS, we can now set 
up its API functionality. On the toolbar, click on Configure:
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6.	 Under the Configuration tree, open the API node to reveal further options. 
Select Settings. Note that Socket port is 7496, and we added the IP address of 
our workstation housing our algorithmic trading system to the list of trusted 
IP addresses, which in this case is 127.0.0.1. Ensure that the Enable ActiveX 
and Socket Clients option is selected to allow the socket connections to TWS:

7.	  Click on OK to save all the changes. TWS is now ready to accept orders and 
market data requests from our algorithmic trading system.

Getting IbPy – the IB API wrapper
IbPy is an add-on module for Python that wraps the IB API. It is open source 
and can be found at https://github.com/blampe/IbPy. Head to this URL and 
download the source files. Unzip the source folder, and use Terminal to navigate to 
this directory. Type python setup.py install to install IbPy as part of the Python 
runtime environment.

https://github.com/blampe/IbPy
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The use of IbPy is similar to the API calls, as documented on the IB website. The 
documentation for IbPy is at https://code.google.com/p/ibpy/w/list.

A simple order routing mechanism
In this section, we will start interacting with TWS using Python by establishing a 
connection and sending out a market order to the exchange.

Once IbPy is installed, import the following necessary modules into our  
Python script:

from ib.ext.Contract import Contract
from ib.ext.Order import Order
from ib.opt import Connection

Next, implement the logging functions to handle calls from the server. The 
error_handler method is invoked whenever the API encounters an error, which 
is accompanied with a message. The server_handler method is dedicated to 
handle all the other forms of returned API messages. The msg variable is a type of 
an ib.opt.message object and references the method calls, as defined by the IB 
API EWrapper methods. The API documentation can be accessed at https://www.
interactivebrokers.com/en/software/api/api.htm. The following is the Python 
code for the server_handler method:

def error_handler(msg):
    print "Server Error:", msg
def server_handler(msg):
    print "Server Msg:", msg.typeName, "-", msg

We will place a sample order of the stock AAPL. The contract specifications of 
the order are defined by the Contract class object found in the ib.ext.Contract 
module. We will create a method called create_contract that returns a new 
instance of this object:

def create_contract(symbol, sec_type, exch, prim_exch, curr):
    contract = Contract()
    contract.m_symbol = symbol
    contract.m_secType = sec_type
    contract.m_exchange = exch
    contract.m_primaryExch = prim_exch
    contract.m_currency = curr
    return contract

https://code.google.com/p/ibpy/w/list
https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm
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The Order class object is used to place an order with TWS. Let's define a method 
called create_order that will return a new instance of the object:

def create_order(order_type, quantity, action):
    order = Order()
    order.m_orderType = order_type
    order.m_totalQuantity = quantity
    order.m_action = action
    return order

After the required methods are created, we can then begin to script the main 
functionality. Let's initialize the required variables:

if __name__ == "__main__":   
    client_id = 100
    order_id = 1
    port = 7496
    tws_conn = None    

Note that the client_id variable is our assigned integer that identifies the instance 
of the client communicating with TWS. The order_id variable is our assigned 
integer that identifies the order queue number sent to TWS. Each new order requires 
this value to be incremented sequentially. The port number has the same value 
as defined in our API settings of TWS earlier. The tws_conn variable holds the 
connection value to TWS. Let's initialize this variable with an empty value for now.

Let's use a try block that encapsulates the Connection.create method to handle 
the socket connections to TWS in a graceful manner:

try:
    # Establish connection to TWS.
    tws_conn = Connection.create(port=port, 
                                 clientId=client_id)
    tws_conn.connect()

    # Assign error handling function.
    tws_conn.register(error_handler, 'Error')

    # Assign server messages handling function.
    tws_conn.registerAll(server_handler)

finally:
    # Disconnect from TWS
    if tws_conn is not None:
        tws_conn.disconnect()
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The port and clientId parameter fields define this connection. After the connection 
instance is created, the connect method will try to connect to TWS.

When the connection to TWS has successfully opened, it is time to register listeners 
to receive notifications from the server. The register method associates a function 
handler to a particular event. The registerAll method associates a handler to all 
the messages generated. This is where the error_handler and server_handler 
methods declared earlier will be used for this occasion.

Before sending our very first order of 100 shares of AAPL to the exchange, we will 
call the create_contract method to create a new contract object for AAPL. Then, 
we will call the create_order method to create a new Order object, to go long 100 
shares. Finally, we will call the placeOrder method of the Connection class to send 
out this order to TWS:

# Create a contract for AAPL stock using SMART order routing.
aapl_contract = create_contract('AAPL', 
                                'STK', 
                                'SMART', 
                                'SMART', 
                                'USD')

# Go long 100 shares of AAPL
aapl_order = create_order('MKT', 100, 'BUY')

# Place order on IB TWS.
tws_conn.placeOrder(order_id, aapl_contract, aapl_order)

That's it! Let's run our Python script. We should get a similar output as follows:

Server Error: <error id=-1, errorCode=2104, errorMsg=Market data farm 
connection is OK:ibdemo>

Server Response: error, <error id=-1, errorCode=2104, errorMsg=Market 
data farm connection is OK:ibdemo>

Server Version: 75

TWS Time at connection:20141210 23:14:17 CST

Server Msg: managedAccounts - <managedAccounts accountsList=DU15200>

Server Msg: nextValidId - <nextValidId orderId=1>

Server Error: <error id=-1, errorCode=2104, errorMsg=Market data farm 
connection is OK:ibdemo>

Server Msg: error - <error id=-1, errorCode=2104, errorMsg=Market data 
farm connection is OK:ibdemo>

Server Error: <error id=-1, errorCode=2107, errorMsg=HMDS data farm 
connection is inactive but should be available upon demand.demohmds>

Server Msg: error - <error id=-1, errorCode=2107, errorMsg=HMDS data farm 
connection is inactive but should be available upon demand.demohmds>
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Basically, what the error messages say is that there are no errors and the connections 
are OK. Should the simulated order be executed successfully during market trading 
hours, the trade will be reflected in TWS:

The full source code of our implementation is given as follows:

""" A Simple Order Routing Mechanism """
from ib.ext.Contract import Contract
from ib.ext.Order import Order
from ib.opt import Connection

def error_handler(msg):
    print "Server Error:", msg

def server_handler(msg):
    print "Server Msg:", msg.typeName, "-", msg
    
def create_contract(symbol, sec_type, exch, prim_exch, curr):
    contract = Contract()
    contract.m_symbol = symbol
    contract.m_secType = sec_type
    contract.m_exchange = exch
    contract.m_primaryExch = prim_exch
    contract.m_currency = curr
    return contract

def create_order(order_type, quantity, action):
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    order = Order()
    order.m_orderType = order_type
    order.m_totalQuantity = quantity
    order.m_action = action
    return order

if __name__ == "__main__":   
    client_id = 1
    order_id = 119
    port = 7496
    tws_conn = None    
    try:
        # Establish connection to TWS.
        tws_conn = Connection.create(port=port, 
                                     clientId=client_id)
        tws_conn.connect()

        # Assign error handling function.
        tws_conn.register(error_handler, 'Error')

        # Assign server messages handling function.
        tws_conn.registerAll(server_handler)

        # Create AAPL contract and send order
        aapl_contract = create_contract('AAPL', 
                                        'STK', 
                                        'SMART', 
                                        'SMART', 
                                        'USD')

        # Go long 100 shares of AAPL
        aapl_order = create_order('MKT', 100, 'BUY')

        # Place order on IB TWS.
        tws_conn.placeOrder(order_id, aapl_contract, aapl_order)
        
    finally:
        # Disconnect from TWS
        if tws_conn is not None:
            tws_conn.disconnect()	
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Building a mean-reverting algorithmic 
trading system
In the previous section, we established a connection to IB TWS and sent a market 
order of 100 shares. In this section, we will add logic functions to buy or sell a 
number of shares, read tick data, and track our positions. In essence, we will try to 
create a simple, fully automated algorithmic trading system.

Setting up the main program
Since our code might get a little complicated, let's tidy up and put everything into a 
class named AlgoSystem. We will import the following modules:

from ib.ext.Contract import Contract
from ib.ext.Order import Order
from ib.opt import Connection, message
import time
import pandas as pd
import datetime as dt

In the initialization section of our class, declare the following variables:

def __init__(self, symbol, qty, resample_interval,
             averaging_period=5, port=7496):
    self.client_id = 1
    self.order_id = 1
    self.qty = qty
    self.symbol_id, self.symbol = 0, symbol
    self.resample_interval = resample_interval
    self.averaging_period = averaging_period
    self.port = port
    self.tws_conn = None
    self.bid_price, self.ask_price = 0, 0
    self.last_prices = pd.DataFrame(columns=[self.symbol_id])
    self.average_price = 0
    self.is_position_opened = False
    self.account_code = None
    self.unrealized_pnl, self.realized_pnl = 0, 0
    self.position = 0
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The first argument of the constructor accepts the ticker symbol that we will trade. 
The integer identifier for the ticker is set as 0 in the symbol_id variable. The qty 
variable contains the quantity of shares to trade. The resample_interval variable 
defines the resampling period of the time series data, which we will use later, while 
the averaging_period variable defines a number of periods of the resampled series 
to be taken into account for calculating the average of prices. The last_prices 
variable is a pandas DataFrame object used to store all of our last prices pertaining to 
the stock ticker.

For our main program, the start method is the entry point that lasts during the 
lifetime of the running trading system:

def start(self):
    try:
        self.connect_to_tws()
        self.register_callback_functions()
        self.request_market_data(self.symbol_id, self.symbol)
        self.request_account_updates(self.account_code)

        while True:
            time.sleep(1)

    except Exception, e:
        print "Error:", e
        self.cancel_market_data(self.symbol)

    finally:
        print "disconnected"
        self.disconnect_from_tws()

The connect_to_tws method establishes the socket connection to TWS, as discussed 
in the previous section. The register_callback_functions method assigns 
functions that will handle the server responses, which we will discuss later. The 
request_market_data method will notify the server to begin streaming data to 
our trading system. Similarly, the request_account_updates method will notify 
the server to begin streaming the position information to our trading system. The 
account_code variable contains the account number assigned by our broker and 
would be assigned upon connection to TWS.

After all the necessary function calls to TWS have been made, an infinite while loop 
keeps our trading system program running in the background while responding 
to market events. Should our script be stopped, the cancel_market_data method 
gracefully terminates the market data streaming functionality before closing the 
connection to TWS.
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Let's take a look at the implementation of the register_callback_functions 
method:

def register_callback_functions(self):
    # Assign server messages handling function.
    self.tws_conn.registerAll(self.server_handler)

    # Assign error handling function.
    self.tws_conn.register(self.error_handler, 'Error')

    # Register market data events.
    self.tws_conn.register(self.tick_event,
                           message.tickPrice,
                           message.tickSize)

Note that an additional register method has been added to listen for the 
tickPrice and tickSize objects of the server message object. The tick_event 
method will handle the incoming tick data.

The request_market_data method requests TWS to start streaming the market 
data for a particular stock ticker symbol. The reqMktData method accepts an integer 
identifier of the symbol and a Contract object. The generic tick type parameter is 
empty for this occasion, and the snapshot market data is not required, as indicated 
by a False value. The use of this method corresponds to the reqMktData method 
documented on the IB API page.

The time.sleep method is added to allow sufficient communication delay and 
ensure completion of the connection to TWS:

def request_market_data(self, symbol_id, symbol):
    contract = self.create_contract(symbol, 
                                    'STK', 
                                    'SMART', 
                                    'SMART', 
                                    'USD')
    self.tws_conn.reqMktData(symbol_id, contract, '', False)
    time.sleep(1)

Requesting for account updates is also performed in the same fashion. If the first 
parameter is set to True, the client will start receiving account and portfolio updates. 
Otherwise, the client will stop receiving this information:

def request_account_updates(self, account_code):
    self.tws_conn.reqAccountUpdates(True, account_code)
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Handling events
Let's modify the error_handler method to print the error messages only:

def error_handler(self, msg):
    if msg.typeName == "error" and msg.id != -1:
        print "Server Error:", msg

The server_handler method handles all the other events, including position and 
account updates, except market data. At this moment, we are only interested in 
the position, unrealized profit and loss, and realized profit and loss, with regards 
to our current stock ticker. This information can be obtained from the tick data 
of type updatePortfolio. Should other positions from different stock tickers 
be available, this information can also be obtained here. The nextValidId and 
the managedAccounts tick data types contain information on the next required 
identification number and the account code respectively. We will ignore the rest  
of the messages at this moment:

def server_handler(self, msg):
    if msg.typeName == "nextValidId":
        self.order_id = msg.orderId
    elif msg.typeName == "managedAccounts":
        self.account_code = msg.accountsList
    elif msg.typeName == "updatePortfolio" \
            and msg.contract.m_symbol == self.symbol:
        self.unrealized_pnl = msg.unrealizedPNL
        self.realized_pnl = msg.realizedPNL
        self.position = msg.position
    elif msg.typeName == "error" and msg.id != -1:
        return

The tick_event method handles the market data that is subscribed to TWS, as 
defined by the tickPrice and tickSize types of tick data. In the msg variable of 
type message object, a field value of 1 indicates that the price received is the market 
bid price, a value of 2 indicates that the price received is the market ask price, and 
a value of 3 indicates the last traded price. In this system, we are only interested in 
using the last price. Further use of the last price is described in the next section.

Also, on every market tick information received, we will perform the trading logic in 
the perform_trade_logic method:

def tick_event(self, msg):
    if msg.field == 1:
        self.bid_price = msg.price
    elif msg.field == 2:
        self.ask_price = msg.price
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    elif msg.field == 4:
        self.last_prices.loc[dt.datetime.now()] = msg.price
        resampled_prices = \
            self.last_prices.resample(self.resample_interval, 
                                      how='last', 
                                      fill_method="ffill")
    self.average_price = resampled_prices.tail(
        self.averaging_period).mean()[0]
    self.perform_trade_logic() 

Implementing the mean-reverting algorithm
Let's implement a simple mean-reverting strategy to our algorithmic trading system. 
The mean-reversion algorithm is one of the most used methods in trading studies.

Suppose we believe that in normal market conditions, the average price of a stock, 
given a certain number of prior periods will lie between the bid price and the offer 
price. When the market prices deviate from the average price, perhaps due to some 
heavy market forces, we believe that the market would revert back to the long-term 
mean price level. When this happens, we would like to open a position using a 
market order. We can also close our position in the same manner.

In the tick_event method, the received prices are used in the trading logic. Last 
price values are stored in a pandas DataFrame object indexed by the time the tick 
data is received. The time difference between two consecutive ticks could be as 
little as a fraction of a second in volatile market conditions. We would be doing 
some sort of high-frequency data management but not true high-frequency trading. 
The first step in studying high-frequency data is to standardize the timestamps by 
resampling. The pandas module contains a resample method to sample the time 
series prices at regular intervals:

self.last_prices.resample(self.resample_interval,
                          how='last',
                          fill_method="ffill") 

This is the code to be used for resampling the time series of last prices. The first 
parameter defines the resampling interval, currently stated as thirty-second intervals. 
The how parameter lets us choose how the resampling will take place. Here, we chose 
to take the last price at the end of every interval using the last value. The fill_
method parameter lets us choose how to populate the empty values encountered in 
the resampled pandas time series. Specify this parameter with the ffill value will 
forward fill-empty resampled values with the preceding values, where applicable.
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The average_price variable stores the mean of the last traded prices for the past  
five-minute intervals, as defined by averaging_period. With 30 seconds per interval, 
we are looking at the average resampled price for the past two and a half minutes:

self.average_price = resampled_prices.tail(
    self.averaging_period).mean()[0]

The implementation of the perform_trade_logic function is given as follows:

def perform_trade_logic(self):
    # Is buying at the market lower than the average price?
    is_buy_signal = self.ask_price < self.average_price

    # Is selling at the market higher than the average price?
    is_sell_signal = self.bid_price > self.average_price

    # Print signal values on every tick
    print dt.datetime.now(), \
        " BUY/SELL? ", is_buy_signal, "/", is_sell_signal, \
        " Avg:", self.average_price

    # Use generated signals, if any, to open a position
    if self.average_price != 0 \
        and self.bid_price != 0 \
        and self.ask_price != 0 \
        and self.position == 0 \
            and not self.is_position_opened:

        if is_sell_signal:
            self.place_market_order(self.symbol, self.qty , False)
            self.is_position_opened = True

        elif is_buy_signal:	
            self.place_market_order(self.symbol, self.qty , True)
            self.is_position_opened = True

    # If position is already opened, use generated signals
    # to close the position.
    elif self.is_position_opened:

        if self.position > 0 and is_sell_signal:
            self.place_market_order(self.symbol, self.qty , False)
            self.is_position_opened = False
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        elif self.position <0 and is_buy_signal:
            self.place_market_order(self.symbol, self.qty , True)
            self.is_position_opened = False

        # When the position is open, keep track of our
        # unrealized and realized P&Ls
        self.monitor_position()

During the entire period, when our trading system is active, we would also want 
to print some information to the console, including signal variables and trade 
performance. The monitor_position method helps you achieve this purpose.

Tracking our positions
Our mean-reverting trading system is now complete. Let's run the program from  
the main function by creating an instance of AlgoSystem to trade 100 shares of the 
stock FB:

>>> if __name__ == "__main__":

>>>     system = AlgoSystem("FB", 100, "30s", 5) 

>>>     system.start()

We should get an output that looks something like this:

Server Version: 75

TWS Time at connection:20141212 17:20:11 CST

2014-12-12 17:20:25.394539  BUY/SELL?  False / False  Avg: 76.77

2014-12-12 17:20:25.394655  BUY/SELL?  False / False  Avg: 76.77

2014-12-12 17:20:25.647989  BUY/SELL?  False / False  Avg: 76.77

2014-12-12 17:20:25.650204  BUY/SELL?  True / False  Avg: 76.81

Placed order 100 of FB to BUY

2014-12-12 17:20:25.652497  BUY/SELL?  True / False  Avg: 76.81

…

2014-12-12 17:20:28.400413  BUY/SELL?  False / False  Avg: 76.77

Position:100 UPnL:-4.0 RPnL:-4.0

2014-12-12 17:20:28.722000  BUY/SELL?  False / False  Avg: 76.77

Position:100 UPnL:-4.0 RPnL:-4.0

2014-12-12 17:20:28.724448  BUY/SELL?  True / False  Avg: 76.8

…

2014-12-12 17:20:56.471880  BUY/SELL?  False / False  Avg: 76.775

Position:100 UPnL:-4.0 RPnL:-4.0
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2014-12-12 17:20:56.684852  BUY/SELL?  False / False  Avg: 76.775

Position:100 UPnL:-4.0 RPnL:-4.0

2014-12-12 17:20:56.687029  BUY/SELL?  False / True  Avg: 76.74

Placed order 100 of FB to SELL

2014-12-12 17:20:56.688781  BUY/SELL?  False / True  Avg: 76.74

2014-12-12 17:20:57.519985  BUY/SELL?  False / True  Avg: 76.74

In TWS, we can track our positions from the Account section:

It looks like more work needs to be done to make our algorithm profitable. Most 
trading systems implement a combination of different signal indicators. Hedging is 
also performed so that our positions will not be exposed to too much risk. In other 
words, a robust trading system requires detailed planning and extensive backtesting 
in reducing the probability of losses and increasing the probability of profits. Many 
commercial trading platforms come with a host of built-in advanced features. It is 
ultimately up to you as a trader to choose the trading platform that lets you best 
implement your trading strategy and to suit your individual style of trading.

The full source code for the AlgoSystem class is available at the Packt Publishing 
website.
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Forex trading with OANDA API
In the previous sections, we implemented a trading system by interfacing with 
Interactive Brokers' Trader WorkStation X through the socket connections over a 
single port. However, many other brokers offer different choices of hooking up 
customized trading software over an API. In this section, we will learn how to 
interface our trading strategy with OANDA's REST API. OANDA is a major player 
in the foreign exchange (forex) business servicing retail investors. We will use a 
trend-following strategy to trade forex products.

What is REST?
REST stands for Representational State Transfer. It refers to web service APIs for 
transferring data over HTTP using the GET, PUT, POST, or DELETE methods.

With the REST API, we can stream the market data and trade the markets using any 
programming language that supports data transfer over HTTP connections along 
with a JavaScript Object Notation (JSON) parser.

Note that REST connections are stateless—the sender or receiver does not store 
information for future use. The sender does not expect an acknowledgement of data 
received; the receiver accepts the data packets without any prior connection setup.

Setting up an OANDA account
OANDA offers a free practice account for testing your trading system. Once you are 
ready for the transit to trading on a live account, all that your trading system needs in 
order to be configured is the associated account identifier and the access token key.

To create your practice account, simply navigate to http://www.oanda.com in your 
web browser and select Try a free demo. Alternatively, the direct sign-up link is 
https://fxtrade.oanda.com/your_account/fxtrade/register/game/signup. 
You should see a sign-up page similar to the following screenshot:

http://www.oanda.com
https://fxtrade.oanda.com/your_account/fxtrade/register/game/signup
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Once you have activated your account, you may click on Sign in to visit the login 
page. Before entering your login credentials, be sure to select the fxTrade Practice 
tab, as shown in the following screenshot:
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On successful sign in, you will be able to view your practice account management 
page, as shown in the following screenshot. Under the MY FUNDS section, take 
a note of the 7-digit number next to the primary account field. This will be your 
account identifier. The account identifier shown in this example is 6858884:

To obtain an API access token for your applications, under OTHER ACTIONS 
section, at the bottom-left of the page, select Manage API Access. You will be 
brought to a page similar to this:
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At this stage, click on Generate to obtain an API access token. An API access token  
is unique and can only be generated once. Make sure to note down this token for 
later use:

Return to the practice account management page. Here, you can also launch fxTrade 
Practice. fxTrade is one of the trading platforms offered by OANDA. It can be used 
on any operating system, such as Windows or Mac with Java installed. Once opened, 
you can begin to trade foreign currencies:
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Let's keep this window open. As we learn to use the API to send orders to the server, 
the trades will be reflected in the fxTrade platform.

Exploring the API
The developer page for OANDA is http://developer.oanda.com. This page 
contains a wealth of information related to the development of your trading system 
in interfacing with the API.

Getting oandapy – the OANDA REST API 
wrapper
Since we will be using Python for our forex trading platform, let's obtain oandapy, 
the Python wrapper for the REST API at https://github.com/oanda/oandapy. 
Download the oandapy.py file to your working directory.

The use of oandapy.py requires the python-requests module. Assuming that you 
have pip installed, run the following command in the Terminal:

$ pip install requests

Now we are ready to use Python to interface with OANDA's REST API.

Getting and parsing rates data
We will get the current rates using the oandapy module. Let's begin by defining 
the account_id and key variables to store our account identifier and access token 
respectively:

>>> account_id = 6858884

>>> key = "4c7718c7e03d472c2369abf1cb7ceddb-" \

>>>       "142b7d845d68844e853bb95c63f1c8b9"

Next, we will create an instance of the oandapy.API, as the oanda variable with the 
following code. The get_prices method is invoked by passing the instruments 
parameter with a string value of EUR_USD so that the rates of the EUR/USD currency 
pair are fetched:

>>> """ Fetch rates """

>>> import oandapy

>>>

>>> oanda = oandapy.API(environment="practice", access_token=key)

>>> response = oanda.get_prices(instruments="EUR_USD")

http://developer.oanda.com
https://github.com/oanda/oandapy
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Let's view the returned response data:

>>> print response

{u'prices': [{u'ask': 1.0976, u'instrument': u'EUR_USD', u'bid':  
1.09744, u'time': u'2015-03-26T02:15:30.015091Z'}]}

The returned data is of a dictionary object type with the prices key that contains a 
list of corresponding prices. Let's parse the data of the first item in the list with the 
bid, ask, instrument, and time keys, and assign them to separate variables:

>>> prices = response["prices"]

>>> bidding_price = float(prices[0]["bid"])

>>> asking_price = float(prices[0]["ask"])

>>> instrument = prices[0]["instrument"]

>>> time = prices[0]["time"]

We can output each variable to ensure that we have parsed the dictionary data 
correctly:

>>> print "[%s] %s bid=%s ask=%s" % (

>>>     time, instrument, bidding_price, asking_price)

[2015-03-26T02:22:54.776348Z] EUR_USD bid=1.09746 ask=1.09762

The current bid price and ask price for EUR/USD is 1.09746 and 1.09762 respectively.

Sending an order
Let's send a limit order to the server with the following code. Note that the expiry 
time is required for a limit order, stop order, or market-if-touched order. We will 
send a limit order to sell 1,000 units of EUR/USD at 1.105 with a one-day expiry 
period:

>>> """ Send an order """

>>> from datetime import datetime, timedelta

>>>

>>> # set the trade to expire after one day

>>> trade_expire = datetime.now() + timedelta(days=1)

>>> trade_expire = trade_expire.isoformat("T") + "Z"

>>>

>>> response = oanda.create_order(

>>>     account_id,
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>>>     instrument="EUR_USD",

>>>     units=1000,

>>>     side="sell", # "buy" or "sell"

>>>     type="limit",

>>>     price=1.105,

>>>     expiry=trade_expire)

>>> print response

{u'orderOpened': {u'lowerBound': 0, u'stopLoss': 0, u'takeProfit': 0,  
u'upperBound': 0, u'expiry': u'2015-03-26T21:42:28.000000Z',  
u'trailingStop': 0, u'units': 1000, u'id': 910641795, u'side':  
u'sell'}, u'instrument': u'EUR_USD', u'price': 1.105, u'time':  
u'2015-03-26T02:42:28.000000Z'}

Valid order types for the type parameter are limit, stop, 
marketIfTouched, and market.

Note that the oanda and account_id variables are reused from the previous section. 
The response data is of a dictionary object type. When successful, the limit order 
trade will appear in the fxTrade Practice platform under the Orders tab, as shown  
in the following screenshot:

Building a trend-following forex trading 
platform
Suppose from the forex tick data collected, we resample the time series at regular 
intervals. The average of prices over a reasonably short time period and long time 
period are calculated. The beta of the price series is taken as the ratio of the short-term 
average prices to the long-term average prices. In price series, where there is no trend, 
the ratio is 1—short-term prices are equal to the long-term prices. When prices are on 
an uptrend, the short-term prices are higher than the long-term average price levels 
and the beta is more than 1. Conversely, when prices are on a downtrend, the beta is 
less than 1.
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In this section, we will discuss the implementation of a trend-following trading 
system to buy a position when prices are in an uptrend and sell when prices are 
going downtrend.

Setting up the main program
Let's create a class named ForexSystem that inherits the oandapy.Streamer class 
with the following required variables in the constructor:

"""
Implementing the trend-following algorithm
for trading foreign currencies
"""
import oandapy
from datetime import datetime
import pandas as pd

class ForexSystem(oandapy.Streamer):
    def __init__(self, *args, **kwargs):
        oandapy.Streamer.__init__(self, *args, **kwargs)
        self.oanda = oandapy.API(kwargs["environment"],
                                 kwargs["access_token"])

        self.instrument = None
        self.account_id = None
        self.qty = 0
        self.resample_interval = '10s'
        self.mean_period_short = 5
        self.mean_period_long = 20
        self.buy_threshold = 1.0
        self.sell_threshold = 1.0

        self.prices = pd.DataFrame()
        self.beta = 0
        self.is_position_opened = False
        self.opening_price = 0
        self.executed_price = 0
        self.unrealized_pnl = 0
        self.realized_pnl = 0
        self.position = 0
        self.dt_format = "%Y-%m-%dT%H:%M:%S.%fZ"
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We will create a method called begin in the ForexSystem class as the starting point 
of the program. Note that invoking self.start will begin streaming rates data:

def begin(self, **params):
    self.instrument = params["instruments"]
    self.account_id = params["accountId"]
    self.qty = params["qty"]
    self.resample_interval = params["resample_interval"]
    self.mean_period_short = params["mean_period_short"]
    self.mean_period_long = params["mean_period_long"]
    self.buy_threshold = params["buy_threshold"]
    self.sell_threshold = params["sell_threshold"]

    self.start(**params)  # Start streaming prices

Handling events
The on_success method is inherited from the oandapy.Streamer class that will 
handle the incoming rates data into our system. In the following code, we will parse 
this data into their respective variables for use in the tick_event method:

def on_success(self, data):
    time, symbol, bid, ask = self.parse_tick_data(
        data["tick"])
    self.tick_event(time, symbol, bid, ask) 

Implementing the trend-following algorithm
The tick_event method will process the tick data information by resampling the 
time series to calculate the beta. Note that we will store the mid-price of the bid and 
ask price. The beta will be used in the perform_trade_logic method to determine 
whether to open or close our position. The status of the system is printed on every 
method call:

def tick_event(self, time, symbol, bid, ask):
    midprice = (ask+bid)/2.
    self.prices.loc[time, symbol] = midprice

    resampled_prices = self.prices.resample(
        self.resample_interval,
        how='last',
        fill_method="ffill")

    mean_short = resampled_prices.tail(
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        self.mean_period_short).mean()[0]
    mean_long = resampled_prices.tail(
        self.mean_period_long).mean()[0]
    self.beta = mean_short / mean_long

    self.perform_trade_logic(self.beta)
    self.calculate_unrealized_pnl(bid, ask)
    self.print_status()

In the following perform_trade_logic method, a buy signal indicates that a new 
long position is to be opened, or an existing short position is to be closed, by sending a 
buy market order. Conversely, a sell signal indicates that a new short position is to be 
opened, or an existing long position is to be closed, by sending a sell market order:

def perform_trade_logic(self, beta):

    if beta > self.buy_threshold:
        if not self.is_position_opened \
                or self.position < 0:
            self.check_and_send_order(True)

    elif beta < self.sell_threshold:
        if not self.is_position_opened \
                or self.position > 0:
            self.check_and_send_order(False)

The full source code for the ForexSystem class is available at the Packt Publishing 
website.

Tracking our positions
The print_status method displays the time, currency pair, position, beta, and 
profits and losses of our position during the running lifetime of the system with  
the following code:

def print_status(self):
    print "[%s] %s pos=%s beta=%s RPnL=%s UPnL=%s" % (
        datetime.now().time(),
        self.instrument, 
        self.position, 
        round(self.beta, 5),
        self.realized_pnl, 
        self.unrealized_pnl)
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Let's start running our algorithmic trading system with the following code:

if __name__ == "__main__":
    key = "4c7718c7e03d472c2369abf1cb7ceddb-" \
          "142b7d845d68844e853bb95c63f1c8b91"
    account_id = 6858884
    system = ForexSystem(environment="practice", access_token=key)
    system.begin(accountId=account_id,
                 instruments="EUR_USD",
                 qty=1000,
                 resample_interval="10s",
                 mean_period_short=5,
                 mean_period_long=20,
                 buy_threshold=1.,
                 sell_threshold=1.) 

Here, we are specifying the system to trade 1,000 units of EUR/USD each time. The 
resampling period of the time series is 10-second intervals. The short-term averaging 
period is defined to be the recent five periods or fifty seconds. The long-term 
averaging period is defined to be the recent twenty periods or two hundred seconds. 
When the beta exceeds the buy threshold value of 1, the system will enter into a long 
position of 1,000 units. Otherwise, when the beta falls below the sell threshold of 1, 
the system will enter into a short position of 1,000 units.

The first few lines of the output should give us the following result:

[09:31:59.067633] EUR_USD pos=0 beta=1.0 RPnL=0 UPnL=0

[09:31:59.163893] EUR_USD pos=0 beta=1.0 RPnL=0 UPnL=0

[09:32:00.233068] EUR_USD pos=0 beta=1.0 RPnL=0 UPnL=0

Suppose after some time, the value of our beta decreases. Our trading system will 
follow the trend by placing a sell market order of 1,000 units of EUR/USD. Our 
output status will update with the following information:

[09:35:42.305521] EUR_USD pos=0 beta=1.0 RPnL=0 UPnL=0

Placed order sell 1000 EUR_USD at market.

[09:35:42.765773] EUR_USD pos=-1000 beta=0.99999 RPnL=0 UPnL=-0.14

[09:35:48.434842] EUR_USD pos=-1000 beta=0.99999 RPnL=0 UPnL=-0.11

…

[09:38:28.864373] EUR_USD pos=-1000 beta=0.99984 RPnL=0 UPnL=0.32

[09:38:29.096078] EUR_USD pos=-1000 beta=0.99984 RPnL=0 UPnL=0.31
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In the fxTrade Practice platform, we should be able to view our trade:

Our trading system will run indefinitely until we terminate the process with a  
Ctrl + Z or something similar.

Although our trend-following trading system seems to be doing reasonable well, 
however, as discussed in the previous sections, more improvements are required  
to develop a profitable and robust trading strategy.

In the next section, we will discuss risk management for our trading systems.

VaR for risk management
As soon as we open a position in the market, we are exposed to various types of 
risks, such as volatility risk and credit risk. To preserve our trading capital as much 
as possible, it is important to incorporate some form of risk management measures  
to our trading system.
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Perhaps the most common measure of risk used in the financial industry is the VaR 
technique. It is designed to simply answer: what is the worst expected amount of 
loss, given a specific probability level, say 95 percent, over a certain period of time? 
The beauty of VaR is that it can be applied to multiple levels, from position-specific 
micro level to portfolio-based macro level. For example, a VaR of $1 million with a 95 
percent confidence level for a one-day time horizon states that on average, only 1 day 
out of 20 would you expect to lose more than $1 million due to market movements.

The following figure illustrates a normally distributed portfolio returns with  
a mean of 0 percent, where VaR is the loss corresponding to the 95th percentile  
of the distribution of portfolio returns:

Suppose we have $100 million under management at a fund claiming to have the 
same risk as an S&P 500 index fund, with an expected return of 9 percent and a 
standard deviation of 20 percent. To calculate the daily VaR at the 5 percent risk  
level or 95 percent confidence using the variance-covariance method, we will  
use the following formulas:

20%, 1.26%
252

daily volatility σ = =

9%, 0.036%
252

daily expected return u = =

( )( )1 , , 1 $2,036,606.50VaR P P N uα σ= − − + =
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Here, P is the value of the portfolio, and ( )1 , ,N uα σ−  is the inverse normal probability 
distribution with risk level of α , mean of u , and standard deviation of σ . The 
number of trading days per year is assumed to be 252. It turns out that the VaR is 
$2,036,606.50.

However, the use of VaR is not without its flaws. It does not take into account the 
probability of the loss for extreme events happening on the far ends of the tails on 
the normal distribution curve. The magnitude of the loss beyond a certain VaR level 
would be difficult to estimate as well. The VaR that we investigated uses historical 
data and an assumed constant volatility level. Such measures are not indicative of 
our future performance.

Let's take a practical approach to calculate the daily VaR of a set of stock prices from 
Yahoo! Finance. We will investigate the AAPL stock:

import datetime as dt
import numpy as np
import pandas.io.data as rda
from scipy.stats import norm

def calculate_daily_VaR(P, prob, mean, sigma, 
                        days_per_year=252.):
    min_ret = norm.ppf(1-prob, 
                       mean/days_per_year, 
                       sigma/np.sqrt(days_per_year))
    return P - P*(min_ret+1)

if __name__ == "__main__":
    start = dt.datetime(2013, 12, 1)
    end = dt.datetime(2014, 12, 1)
    
    prices = rda.DataReader("AAPL", "yahoo", start, end)
    returns = prices["Adj Close"].pct_change().dropna()

    portvolio_value = 100000000.00
    confidence = 0.95
    mu = np.mean(returns)
    sigma = np.std(returns)
    
    VaR = calculate_daily_VaR(portvolio_value, confidence,
                              mu, sigma) 
    print "Value-at-Risk:", round(VaR, 2)
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The calculate_daily_VaR function performs the daily VaR calculation, assuming 
252 trading days per year. The mean and sigma variables are annualized values of 
the average and standard deviation of daily stock returns respectively. The norm.ppf 
method of the scipy.stats module performs the inverse of the normal probability 
with a risk level of 1-prob, where prob is the confidence value of interest.

The pandas.io.data.DataReader function is a nifty feature of pandas that provides 
remote data access to certain data sources, including the following:

•	 Yahoo! Finance
•	 Google Finance
•	 St. Louis Fed (FRED)
•	 Kenneth French's data library
•	 World Bank
•	 Google Analytics

We chose Yahoo! Finance with the yahoo value encapsulated in string quotes in the 
function arguments, along with the start and end dates of the data. The Adj Close 
column of the returned DataFrame object is used to compute the daily percentage 
price changes. Finally, we will call the calculate_daily_VaR function to compute 
our daily VaR:

Value-at-Risk: 138755.57

The daily VaR for the stock AAPL with 95 percent confidence is $138,755.57.

Summary
In this chapter, we were introduced to the evolution of trading from the pits to the 
electronic trading platform, and learned how algorithmic trading came about. We 
looked at some brokers offering API access to their trading service offering. To help 
us get started on our journey in developing an algorithmic trading system, we used 
the TWS of IB and the IbPy Python module.

In our first trading program, we successfully sent an order to our broker through the 
TWS API using a demonstration account. Next, we developed a simple algorithmic 
trading system. We started by requesting the market data and account updates 
from the server. With the captured real-time information, we implemented a mean-
reverting algorithm to trade the markets. Since this trading system uses only one 
indicator, more work would be required to build a robust, reliable, and profitable 
trading system.
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We also discussed currency trading with the OANDA REST API with the help of the 
oandapy Python module. After setting up our account for API access, our first step to 
explore the OANDA API is to fetch rates for a single currency pair and send a limit 
order to the server. Using the fxTrade Practice platform, we can track our current 
trades, orders, and positions. Next, we developed a trend-following algorithm to 
trade the EUR/USD currency pair with the use of streaming rates and market orders.

One critical aspect of trading is to manage risk effectively. In the financial industry, 
the VaR is the most common technique used to measure risk. Using Python, we took 
a practical approach to calculate the daily VaR of a set of stock prices from Yahoo! 
Finance.

Once we have built a working algorithmic trading system, we can explore the other 
ways to measure the performance of our trading strategy. One of these areas is 
backtesting. We will discuss this topic in the next chapter.
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Backtesting
A backtest is a simulation of a model-driven investment strategy's response to 
historical data. While working on designing and developing a backtest, it would be 
helpful to think in terms of the concept of creating video games.

In this chapter, we will design and implement an event-driven backtesting system 
using object-oriented design. We can then plot our resulting profits and losses onto 
a graph to help us visualize the performance of our trading strategy. Is this sufficient 
to deduce a good model?

There are many concerns to be addressed in backtesting, for example, the effects of 
transaction costs, execution latency of orders, access to detailed transactions, and 
quality of historical data. Notwithstanding these factors, the primary goal of creating 
a backtesting system is to test a model as accurately as possible.

Backtesting involves a lot of research that merits its own literature. We will briefly 
cover some thoughts that you might want to consider when implementing a 
backtest. Typically, a number of algorithms are employed in backtesting. We will 
briefly discuss some of these: k-means clustering, k-nearest neighbor, classification 
and regression tree, 2k factorial design, and genetic algorithm.

In this chapter, we will cover the following topics:

•	 An introduction to backtesting
•	 Concerns in backtesting
•	 Concept of an event-driven backtesting system
•	 Designing and implementing a backtesting system
•	 Creating the TickData, MarketData, MarketDataSource, and Order class
•	 Creating the Position, Strategy, and MeanRevertingStrategy class
•	 Creating and running the Backtester class
•	 Ten considerations for a backtesting model
•	 Discussion of algorithms in backtesting
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An introduction to backtesting
A backtest is a simulation of a model-driven investment strategy's response to 
historical data. The purpose of performing experiments with backtests is to make 
discoveries about a process or system. Using historical data, you can save time in 
testing an investment strategy for the period forward. It helps you test an investment 
theory based on the movements of the tested period. It is also used to both evaluate 
and calibrate an investment model.

Creating a model is only the first step. The investment strategy will typically employ 
the model to help you drive simulated trading decisions and compute various factors 
related to either risk or return. These factors are typically used together to find a 
combination that is predictive of return.

Concerns in backtesting
However, there are many concerns to be addressed in backtesting. A backtest can 
never exactly replicate the performance of an investment strategy in an actual 
trading environment. The quality of the historical data is of question, since it is 
subjected to outliers by third-party data vendors. Look-ahead bias takes many 
forms. For example, listed companies may split, merge, or delist, resulting in 
substantial changes to its stock price. For strategies based on information from the 
order book, the market microstructure is extremely difficult to simulate realistically, 
since it represents the collective visible demand and supply in continuous time. 
This demand and supply are in turn affected by news events around the world. 
Icebergs and resting orders are some hidden elements of the market that could affect 
the structure once activated. Other factors to be considered are transaction costs, 
execution latency of orders, and access to detailed transactions from backtesting. 
Notwithstanding these factors, the primary goal of creating a backtesting system is 
thus to test a model as accurately as possible.

Look-ahead bias is the use of available future data during the 
period it is being analyzed, resulting in inaccurate results in the 
simulation or study. It is vital to use information that would be 
only available during the period of study.
In finance, iceberg orders are large orders that are broken up into 
several small orders. Only a small portion of the order is visible 
to the public—just like the "tip of the iceberg"—while the mass of 
the actual order is hidden.
A resting order is an order whose price is away from the market 
and is waiting to be executed.
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Concept of an event-driven backtesting 
system
While working on designing and developing a backtest, it would be helpful to think 
in terms of the concept of creating video games. After all, we are trying to create a 
simulated market pricing and ordering environment, very much akin to creating a 
virtual gaming world. Trading can also be regarded as a thrilling game of buying 
low and selling high.

In a virtual trading environment, components are needed for the simulation of price 
feeds, the order matching engine, the order book management as well as for account 
and position updates. To achieve these functionalities, we can explore the concept of 
an event-driven backtesting system.

Let's start by understanding the concept of an event-driven programming paradigm 
used throughout the game development process. A system typically receives events 
as its inputs. It might be a keystroke entered by a user or a mouse movement. Other 
events could be messages that are generated by another system, a process, or a 
sensor to notify the host system of an incoming event.

The following flowchart illustrates the stages involved in a game engine system:
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Let's take a look at a pseudocode implementation of a main game engine loop:

while is_main_loop: # Main game engine loop
  handle_input_events()
  update_AI()
  update_physics()
  update_game_objects()
  render_screen()
  sleep(1/60) # Assuming a 60 frames-per-second video game rate

The core functions within the main game engine loop may process generated  
system events, as in the case of the handle_input_events function to handle  
the keyboard events:

def handle_input_events()
  event = get_latest_event()

  if event.type == "UP_KEY_PRESS":
    move_player_up()
  elif event.type == "DOWN_KEY_PRESS":
    move_player_down()

Using an event-driven system, such as the preceding example, helps us achieve 
code modularity and reusability by being able to swap and use similar events from 
different system components. The use of object-oriented programming is further 
enforced, where classes define objects in a game. These features are particularly 
useful for interfacing with different market data sources, multiple trading 
algorithms, and runtime environments when designing our trading platform.  
The simulated trading environment is close to being a realistic one and helps  
us prevent look-ahead bias.

Designing and implementing a 
backtesting system
Now that we have an idea of designing a video game for creating a backtesting 
trading system, we can begin our object-oriented approach by first defining the 
required classes for the various components in our trading system.
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We are interested in implementing a simple backtesting system to test a mean-
reverting strategy. Using the daily historical prices from Google Finance, we will 
take the closing price of each day to compute the volatility of price returns for a 
particular stock, using the ticker symbol AAPL as an example. We want to test a 
theory that if the standard deviation of returns for an elapsed number of days is far 
from the mean of zero by a particular threshold, a buy or sell signal is generated. 
When such a signal is indeed generated, a market order is sent to the exchange  
to be executed at the opening price of the next trading day.

As soon as we open a position, we would like to track our unrealized and realized 
profits till date. Our open position can be closed when an opposing signal is 
generated. On completion of the backtest, we will plot our profits and losses  
to see how well our strategy holds.

Does our theory sound like a viable trading strategy? Well, let's find out! The 
following sections explain the classes that will be used for implementing a 
backtesting system.

The TickData class
The TickData class represents a single unit of data received from a market data 
source. In this example, we are interested in just the stock symbol, the timestamp  
of the data, the opening price, and the last price: 

""" Store a single unit of data """
class TickData:
    def __init__(self, symbol, timestamp,
                 last_price=0, total_volume=0):
        self.symbol = symbol
        self.timestamp = timestamp
        self.open_price = 0
        self.last_price = last_price
        self.total_volume = total_volume

Detailed descriptions of a single unit of tick data, such as the total volume, bid price, 
ask price, or last volume can be added as our system evolves.
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The MarketData class
An instance of this class is used throughout the system to store and retrieve prices  
by the various components. Essentially, a container is used to store the last tick  
data. Additional helper functions are included to provide easy reference to the 
required information:

class MarketData:
    def __init__(self):
        self.__recent_ticks__ = dict()

    def add_last_price(self, time, symbol, price, volume):
        tick_data = TickData(symbol, time, price, volume)
        self.__recent_ticks__[symbol] = tick_data

    def add_open_price(self, time, symbol, price):
        tick_data = self.get_existing_tick_data(symbol, time)
        tick_data.open_price = price

    def get_existing_tick_data(self, symbol, time):
        if not symbol in self.__recent_ticks__:
            tick_data = TickData(symbol, time)
            self.__recent_ticks__[symbol] = tick_data

        return self.__recent_ticks__[symbol]

    def get_last_price(self, symbol):
        return self.__recent_ticks__[symbol].last_price

    def get_open_price(self, symbol):
        return self.__recent_ticks__[symbol].open_price

    def get_timestamp(self, symbol):
        return self.__recent_ticks__[symbol].timestamp

The MarketDataSource class
The MarketDataSource class helps us fetch historical data from an external source, 
such as Google Finance or Yahoo! Finance. The required parameter values, such as 
start, end, ticker, and source are provided from the host component of this class, 
which we will discuss later. After saving the opening and closing prices of each day, 
the event_tick variable that represents a function handled by the host component 
will be invoked on every tick event. Notice that we are using the DataReader 
function of pandas to retrieve historical prices. The acceptable parameters are  
yahoo for Yahoo! Finance data source and google for Google Finance data source:

import pandas.io.data as web

""" Download prices from an external data source """
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class MarketDataSource:
    def __init__(self):
        self.event_tick = None
        self.ticker, self.source = None, None
        self.start, self.end = None, None
        self.md = MarketData()

    def start_market_simulation(self):
        data = web.DataReader(self.ticker, self.source,
                              self.start, self.end)

        for time, row in data.iterrows():
            self.md.add_last_price(time, self.ticker,
                                   row["Close"], row["Volume"])
            self.md.add_open_price(time, self.ticker, row["Open"])

            if not self.event_tick is None:
                self.event_tick(self.md)

The Order class
The Order class represents a single order sent by the strategy to the server. Each 
order contains a timestamp, the symbol, quantity, price, and the size of the order. In 
this example, we are using market orders only. Other order types, such as limit and 
stop orders, can be further implemented if desired. Once an order is filled, the order 
is further updated with the filled time, quantity, and price:

class Order:
    def __init__(self, timestamp, symbol, qty, is_buy,
                 is_market_order, price=0):
        self.timestamp = timestamp
        self.symbol = symbol
        self.qty = qty
        self.price = price
        self.is_buy = is_buy
        self.is_market_order = is_market_order
        self.is_filled = False
        self.filled_price = 0
        self.filled_time = None
        self.filled_qty = 0
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The Position class
The Position class helps us keep track of our current market position and account 
balance. Note that the position_value variable starts with a value of zero. When 
stocks are bought, the value of the securities is debited from this account. When 
stocks are sold, the value of the securities is credited into this account:

class Position:
    def __init__(self):
        self.symbol = None
        self.buys, self.sells, self.net = 0, 0, 0
        self.realized_pnl = 0
        self.unrealized_pnl = 0
        self.position_value = 0

    def event_fill(self, timestamp, is_buy, qty, price):
        if is_buy:
            self.buys += qty
        else:
            self.sells += qty

        self.net = self.buys - self.sells
        changed_value = qty * price * (-1 if is_buy else 1)
        self.position_value += changed_value

        if self.net == 0:
            self.realized_pnl = self.position_value

    def update_unrealized_pnl(self, price):
        if self.net == 0:
            self.unrealized_pnl = 0
        else:
            self.unrealized_pnl = price * self.net + \
                                  self.position_value

        return self.unrealized_pnl
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The Strategy class
The Strategy class is the base class for all other strategy implementations. The 
event_tick method is called when new market tick data arrives. The event_order 
method is called whenever there are order updates. The event_position method 
is called whenever there are updates to our positions. The send_market_order 
method is called when the implementing strategy sends a market order to the host 
component to be routed to the server for execution:

""" Base strategy for implementation """
class Strategy:
    def __init__(self):
        self.event_sendorder = None

    def event_tick(self, market_data):
        pass

    def event_order(self, order):
        pass

    def event_position(self, positions):
        pass

    def send_market_order(self, symbol, qty, is_buy, timestamp):
        if not self.event_sendorder is None:
            order = Order(timestamp, symbol, qty, is_buy, True)
            self.event_sendorder(order)

The MeanRevertingStrategy class
In this example, we are implementing a mean-reverting strategy with the 
MeanRevertingStrategy class that inherits the Strategy class. We will use  
the stock symbol AAPL.

The event_position method is overridden and updates the state of the strategy to 
indicate a long or a short on every change in position. Knowing the current state of 
the strategy prevents us from adding on to our positions and entering more orders 
than intended.

The event_tick method is overridden to perform the trade logic decision on every 
incoming tick data, which is stored as a pandas DataFrame object, to calculate the 
strategy parameters. The lookback_intervals variable defines a maximum of  
20 days of historical prices to store.
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The calculate_z_score method implements our mean-reverting calculations. The 
daily percentage change of close prices over the previous day is computed. The 
dropna function removes any empty values from the result. The returns are then 
Z-scored, such as:

xZ score µ
σ
−

− =

Here, x  is the most recent return, µ  is the mean of returns, and σ  is the standard 
deviation of returns. A z_score value of 0 indicates that the score is the same  
as the mean. When the value of z_score reaches 1.5 or -1.5, as defined by the  
sell_threshold and buy_threshold variables respectively, this could indicate a 
strong sell or buy signal, since the Z-score for the following periods is expected to 
revert back to the mean of zero. When a signal is generated it can be used to either 
open a position or to close an existing position:

"""
Implementation of a mean-reverting strategy
based on the Strategy class
"""
import pandas as pd

class MeanRevertingStrategy(Strategy):
    def __init__(self, symbol,
                 lookback_intervals=20,
                 buy_threshold=-1.5,
                 sell_threshold=1.5):
        Strategy.__init__(self)
        self.symbol = symbol
        self.lookback_intervals = lookback_intervals
        self.buy_threshold = buy_threshold
        self.sell_threshold = sell_threshold
        self.prices = pd.DataFrame()
        self.is_long, self.is_short = False, False

    def event_position(self, positions):
        if self.symbol in positions:
            position = positions[self.symbol]
            self.is_long = True if position.net > 0 else False
            self.is_short = True if position.net < 0 else False

    def event_tick(self, market_data):
        self.store_prices(market_data)
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        if len(self.prices) < self.lookback_intervals:
            return

        signal_value = self.calculate_z_score()
        timestamp = market_data.get_timestamp(self.symbol)

        if signal_value < self.buy_threshold:
            self.on_buy_signal(timestamp)
        elif signal_value > self.sell_threshold:
            self.on_sell_signal(timestamp)

    def store_prices(self, market_data):
        timestamp = market_data.get_timestamp(self.symbol)
        self.prices.loc[timestamp, "close"] = \
            market_data.get_last_price(self.symbol)
        self.prices.loc[timestamp, "open"] = \
            market_data.get_open_price(self.symbol)

    def calculate_z_score(self):
        self.prices = self.prices[-self.lookback_intervals:]
        returns = self.prices["close"].pct_change().dropna()
        z_score = ((returns-returns.mean())/returns.std())[-1]
        return z_score

    def on_buy_signal(self, timestamp):
        if not self.is_long:
            self.send_market_order(self.symbol, 100,
                                   True, timestamp)

    def on_sell_signal(self, timestamp):
        if not self.is_short:
            self.send_market_order(self.symbol, 100,
                                   False, timestamp)

The Backtester class
After defining all of our core components, we are now ready to implement the 
backtesting engine as the Backtester class.

The start_backtest method initializes our strategy, defines the order handler for 
this strategy with the evthandler_order method, sets up and runs the market data 
source function. When data is received from the market data source function, the 
function evthandler_tick method handles each incoming tick data and passes 
them to our strategy.
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Thereafter, the match_order_book method, in conjunction with the is_order_
unmatched method, is called to make an attempt to match any outstanding orders 
in our system, given the current market prices. The is_order_unmatched method 
returns True when no order is filled, or False otherwise. On filling an order, it 
calls the update_filled_position method for further processing. This includes 
updating the position values, notifying the Strategy object of a position update, 
and keeping track of our profits and losses. The is_order_unmatched method also 
notifies the Strategy object of an order update event when an order is filled.

Lastly, the position updates are printed to the console to help us keep track of our 
account status. This main loop of the backtesting engine continues until the last 
tick is available from the source of the market data. The full implementation of the 
Backtester class is given as follows:

import datetime as dt
import pandas as pd

class Backtester:
    def __init__(self, symbol, start_date, end_date,
                 data_source="google"):
        self.target_symbol = symbol
        self.data_source = data_source
        self.start_dt = start_date
        self.end_dt = end_date
        self.strategy = None
        self.unfilled_orders = []
        self.positions = dict()
        self.current_prices = None
        self.rpnl, self.upnl = pd.DataFrame(), pd.DataFrame()

    def get_timestamp(self):
        return self.current_prices.get_timestamp(
            self.target_symbol)

    def get_trade_date(self):
        timestamp = self.get_timestamp()
        return timestamp.strftime("%Y-%m-%d")

    def update_filled_position(self, symbol, qty, is_buy,
                               price, timestamp):
        position = self.get_position(symbol)
        position.event_fill(timestamp, is_buy, qty, price)
        self.strategy.event_position(self.positions)
        self.rpnl.loc[timestamp, "rpnl"] = position.realized_pnl
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        print self.get_trade_date(), \
            "Filled:", "BUY" if is_buy else "SELL", \
            qty, symbol, "at", price

    def get_position(self, symbol):
        if symbol not in self.positions:
            position = Position()
            position.symbol = symbol
            self.positions[symbol] = position

        return self.positions[symbol]

    def evthandler_order(self, order):
        self.unfilled_orders.append(order)

        print self.get_trade_date(), \
            "Received order:", \
            "BUY" if order.is_buy else "SELL", order.qty, \
             order.symbol

    def match_order_book(self, prices):
        if len(self.unfilled_orders) > 0:
            self.unfilled_orders = \
                [order for order in self.unfilled_orders
                 if self.is_order_unmatched(order, prices)]

    def is_order_unmatched(self, order, prices):
        symbol = order.symbol
        timestamp = prices.get_timestamp(symbol)

        if order.is_market_order and timestamp > order.timestamp:
            # Order is matched and filled.
            order.is_filled = True
            open_price = prices.get_open_price(symbol)
            order.filled_timestamp = timestamp
            order.filled_price = open_price
            self.update_filled_position(symbol,
                                        order.qty,
                                        order.is_buy,
                                        open_price,
                                        timestamp)
            self.strategy.event_order(order)
            return False
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        return True

    def print_position_status(self, symbol, prices):
        if symbol in self.positions:
            position = self.positions[symbol]
            close_price = prices.get_last_price(symbol)
            position.update_unrealized_pnl(close_price)
            self.upnl.loc[self.get_timestamp(), "upnl"] = \
                position.unrealized_pnl

            print self.get_trade_date(), \
                "Net:", position.net, \
                "Value:", position.position_value, \
                "UPnL:", position.unrealized_pnl, \
                "RPnL:", position.realized_pnl

    def evthandler_tick(self, prices):
        self.current_prices = prices
        self.strategy.event_tick(prices)
        self.match_order_book(prices)
        self.print_position_status(self.target_symbol, prices)

    def start_backtest(self):
        self.strategy = MeanRevertingStrategy(self.target_symbol)
        self.strategy.event_sendorder = self.evthandler_order

        mds = MarketDataSource()
        mds.event_tick = self.evthandler_tick
        mds.ticker = self.target_symbol
        mds.source = self.data_source
        mds.start, mds.end = self.start_dt, self.end_dt

        print "Backtesting started..."
        mds.start_market_simulation()
        print "Completed."

Running our backtesting system
To run our backtester, simply create an instance of the class with the required 
parameters. Here, we defined the ticker symbol AAPL for the period January 1, 2014 
to December 31, 2014. By default, our target market data source is defined as google. 
Then, we will call the start_backtest method:

>>> backtester = Backtester("AAPL",

...                                      dt.datetime(2014, 1, 1),
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...                                      dt.datetime(2014, 12, 31))

>>> backtester.start_backtest()

The output will begin to run like this:

Backtesting started...

2014-02-27 Received order: SELL 100 AAPL

2014-02-28 Filled: SELL 100 AAPL at 75.58

2014-02-28 Net: -100 Value: 7558.0 UPnL: 40.0 RPnL: 0

2014-03-03 Net: -100 Value: 7558.0 UPnL: 19.0 RPnL: 0

2014-03-04 Net: -100 Value: 7558.0 UPnL: -31.0 RPnL: 0

…

Almost a year's worth of daily information will be printed onto the console. The 
output will end with something like this:

…

014-12-29 Net: -100 Value: 12504.0 UPnL: 1113.0 RPnL: 1278.0

2014-12-30 Net: -100 Value: 12504.0 UPnL: 1252.0 RPnL: 1278.0

2014-12-31 Net: -100 Value: 12504.0 UPnL: 1466.0 RPnL: 1278.0

Completed.

In the MeanRevertingStrategy class, we trade shares of AAPL in quantities of 100. 
Note that when the backtest is completed, we still have an outstanding short position 
of 100 shares. Our realized profit and loss is $1,278, while the unrealized profit from 
the short position is $1,466.
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Since we store the daily realized and unrealized profits and losses into a pandas 
DataFrame object, named rpnl and upnl respectively, we can plot the results to 
visualize the returns from our strategy:

>>> import matplotlib.pyplot as plt

>>> backtester.rpnl.plot()

>>> plt.show()

>>> backtester.upnl.plot()

>>> plt.show()

The following is the output for the preceding commands:
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Improving your backtesting system
In this section, we looked at creating a simple backtesting system based on daily 
closing prices for a mean-reverting strategy. There are several areas of considerations 
to make such a backtesting model more realistic. Are historical daily prices sufficient 
to test our model? Should intra-day limit orders be used instead? Our account value 
started from zero; how can we reflect our capital requirements accurately? Are we 
able to borrow shares for shorting?

Since we took an object-oriented approach to create a backtesting system, how easy 
would it be to integrate other components in future? A trading system could accept 
more than one source of market data. We could also create components that allow us 
to deploy our system to the product environment.

The list of concerns mentioned are not exhaustive. To guide us in implementing a 
robust backtesting model, the next section spells out ten considerations in the design 
of such a system.

Ten considerations for a backtesting 
model
In the previous section, we performed one replication of a backtest. Our result looks 
pretty optimistic. However, is this sufficient to deduce that this is a good model? 
The truth is that backtesting involves a lot of research that stems a literature on its 
own. The following list briefly covers some thoughts that you might want to consider 
when implementing your backtests.

Resources restricting your model
The resources that are available to your backtesting system limits how well you can 
implement your backtest. A financial model that generates signals using only the last 
closing price needs a set of historical data of closing prices. A trading system that 
requires reading from the order book requires all levels of the order book data to be 
available on every tick. This adds up the storage complexity. Other resources, such 
as exchange data, estimation techniques, and computer resources pose a limitation 
on the nature of model that can be used.
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Criteria of evaluation of the model
How can we conclude that a model is good? Some factors of consideration are Sharpe 
ratios, hit ratios, average rate of return, VaR statistics, as well as the minimum and 
maximum drawdown encountered. How can a combination of such factors balance 
so that a model is usable? How much can the maximum drawdown be tolerated in 
achieving a high Sharpe ratio?

Estimating the quality of backtest parameters
Using a variety of parameters on a model typically gives us varied results. From 
multiple models, we can obtain additional sets of data for each model. Can the 
parameters from the model with the best performance be trustworthy? Using 
methods such as model averaging can help us correct optimistic estimates.

The model averaging technique is the average fit for a number of models 
as opposed to using a single best model.

Be prepared to face model risk
Perhaps after extensive backtesting, you may find yourself with a good quality 
model. How long is it going to stay that way? In model risk, the market structure 
or the model parameters may change with time, or a regime change may cause 
the functional form of your model to change abruptly. By then, you could even be 
uncertain that your model is correct. A solution in addressing model risk is to use 
model averaging.

Performance of a backtest with in-sample 
data
Backtesting helps us perform extensive parameter searches that optimize the results 
of a model. This exploits the true as well as the idiosyncratic aspects of the sample 
data. Also, historical data can never mimic the way that entire data comes from live 
markets. These optimized results will always produce an optimistic assessment of 
the model and the strategy used.
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Addressing common pitfalls in backtesting
The most common error made in backtesting is look-ahead bias, and it comes in 
many forms. For example, parameter estimates may be derived from the entire 
period of the sample data, which constitute to using information from the future. 
Statistical estimates like these and model selection should be estimated sequentially, 
which could actually be difficult to do so.

Errors in data come in all forms, from hardware, software, and human errors  
that could occur while routed by data distribution vendors. Listed companies may 
split, merge, or delist, resulting in substantial changes to its stock price. These  
actions could lead to survivorship bias in our models. Failure to clean data properly 
will give undue influence to idiosyncratic aspects of data, and thus affect the  
model parameters.

Survivorship bias is the logical error of concentrating on results that 
have survived some past selection process. For example, a stock market 
index may report a strong performance even in bad times because poor 
performing stocks are dropped from its component weightage, resulting 
in an overestimation of past returns.

Failure to use shrinkage estimators or model averaging could report results 
containing extreme values, making it difficult for comparison and evaluation.

In statistics, a shrinkage estimator is used as an alternative to an ordinary 
least squares estimator to produce the smallest mean squared error. They 
can be used to shrink raw estimates from the model output towards zero 
or an other fixed constant value.

Have a common sense idea of your model
Often, common sense could be lacking in our models. We may attempt to explain a 
trendless variable with a trended variable or infer causation from correlation. Can 
logarithmic values be used when the context does or does not require it?
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Understanding the context for the model
Having a common sense idea of a model is barely sufficient. A good model takes into 
account the history, personnel involved, operating constraints, common peculiarities, 
and all the understanding for the rationale of the model. Are commodity prices 
following seasonal movements? How was the data gathered? Are the formulas used 
in the computation of variables reliable? These questions can help us determine the 
causes, should things go wrong.

Make sure you have the right data
Not many of us have access to tick-level data. Low-resolution tick data may miss 
out on detailed information. Even tick-level data may be fraught with errors. Using 
summary statistics, such as the mean, standard errors, maximums, minimums, and 
correlations, tells us a lot about the nature of the data; whether we can really use it, 
or infer backtest parameter estimates.

When data cleaning is performed, we might ask these questions: what are things to 
look out for? Are values realistic and logical? How is missing data coded?

Devise a system of reporting data and results. The use of graphs helps the human 
eye to visualize patterns that might come across as unexpected. Histograms might 
reveal unexpected distribution, or residual plots might show unexpected prediction 
error patterns. Scatterplots of residualized data may show additional modeling 
opportunities.

Residualized data is the difference or "residuals" between the observed 
values and those of the model.

Data mine your results
From running over several iterations of backtests, the results represent a source 
of information about your model. Running your model in real-time conditions 
contains another source of results. By data mining all this wealth of information, 
we can obtain a data-driven result that can avoid tailoring the model specifications 
to the sample data. It is recommended that you use shrinkage estimators or model 
averaging when reporting the results.
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Discussion of algorithms in backtesting
After taking into consideration the designing of a backtesting model, one or more 
algorithms may be used to improve the model on a continuous basis. This section 
briefly covers some of the algorithmic techniques used in areas of backtesting, such 
as data mining and machine learning.

K-means clustering
The k-means clustering algorithm is a method of clustering analysis in data mining. 
From the backtest results of n observations, the k-means algorithm is designed to 
classify the data into k clusters based on their relative distance from each other. The 
center point of each cluster is computed. The objective then is to find the within-
cluster sum of squares that gives us a model averaged point. The model averaged 
point indicates the likely average performance of the model, which can be used for 
further comparison with the performance of other models.

K-nearest neighbor machine learning 
algorithm
The k-nearest neighbor (KNN) is a lazy learning technique that does not build  
any models.

An initial set of backtest model parameters are chosen either by random or  
best guess.

After analyzing the results of the model, a k number of sets of parameters that is 
closest to the original set are used for computation in the next step. The model will 
then take the set of parameters that gives the best results.

The process continues until the terminating condition is reached, thereby always 
giving the best set of model parameters available.

Classification and regression tree analysis
The classification and regression tree (CART) analysis contains two decision 
trees that are used in data mining. The classification tree uses classification rules to 
classify the outcomes of a model using nodes and branches in the decision tree. The 
regression tree attempts to assign a real value to the classified outcome. The resulting 
values are averaged to provide a measure of the quality of the decision.
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The 2k factorial design
When designing experiments for backtesting, we can consider the use of 2k 
factorial design. Suppose we have two factors, A and B. Each factor behaves like a 
Boolean value, where values of either +1 or -1. A +1 value indicates a quantitatively 
high value, while -1 indicates a low value. This gives us a combination of 22 4=  
outcomes. For a 3-factor model, this gives us a combination of 32 8=  outcomes.  
The following table illustrates an example with two factors with outcomes W, X, Y, 
and Z:

A B Replication I 
Value +1 +1 W
Value +1 -1 X
Value -1 +1 Y
Value -1 -1 Z

Note that we are generating one replication of backtest to produce a set of outcomes. 
Performing additional replications gives us more information. From this data, we 
can perform a regression and analyze its variance. The objectives of these tests are to 
determine which factors, A or B, are more influential over another, and what values 
should be chosen so that the outcomes are either near some desired value, able to 
achieve a low variance, or minimize the effects of uncontrollable variables.

The genetic algorithm
The genetic algorithm (GA) is a technique where every individual evolves itself 
through the process of natural selection to optimize a problem. A population of 
candidate solutions in an optimization problem goes through an iterative process 
of selection to become parents, undergoing mutation and crossover to produce the 
next generation of offsprings. Over cycles of successive generations, the population 
evolves toward an optimal solution.

The application of genetic algorithms can be applied to a variety of optimizing 
problems, including backtesting, and is especially useful for solving standard 
optimizations, discontinuous or non-differentiable problems, or nonlinear outcomes.
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Summary
A backtest is a simulation of a model-driven investment strategy's response to 
historical data. The purpose of performing experiments with backtests is to make 
discoveries about a process or system and to compute various factors related to 
either risk or return. The factors are typically used together to find a combination 
that is predictive of return.

While working on designing and developing a backtester, to achieve functionalities, 
such as simulated market pricing, ordering environment, order matching engine, 
order book management, as well as account and position updates, we can explore  
the concept of an event-driven backtesting system.

In this chapter, we designed and implemented an event-driven backtesting system 
using the TickData class, the MarketDataSource class, the Order class, the 
Position class, the Strategy class, the MeanRevertingStrategy class, and the 
Backtester class. We plotted our resulting profits and losses onto a graph to  
help us visualize the performance of our trading strategy.

Backtesting involves a lot of research that merits a literature on its own. In this 
chapter, we explored ten considerations for designing a backtest model. To  
help improve our models on a continuous basis, a number of algorithms can be 
employed in backtesting. We briefly discussed some of these: k-means clustering, 
k-nearest neighbor, classification and regression tree, 2k factorial design, and  
genetic algorithm.

In the next chapter, we will discuss Excel with Python, using the Component  
Object Model (COM).
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Excel with Python
In finance, Microsoft Excel is used as a handy tool for bond traders and is useful in 
banking operations, as well as task automations using Visual Basic for Applications 
(VBA). Excel supports the use of Component Object Model (COM) to extend the 
functionality for custom tasks. This is achieved with the use of COM add-ins as an 
in-process COM server. With VBA, a wrapper can be created for the COM add-in 
function so that the COM component can be integrated as a worksheet cell formula 
function. COM allows the reuse of objects across different software and hardware 
environments to interface with each other, without the knowledge of its internal 
implementation. It allows an object to be created in several languages, such as C, 
C++, Visual Basic, Delphi, or Python.

In this chapter, we will learn how to build a COM server in Python. We will then 
create a COM client in Microsoft Excel and interface with the COM server to perform 
numerical pricing on the call and put options. We will use the Black-Scholes model, 
the binomial tree model, and the trinomial lattice model from the earlier chapters 
covered in this book for the COM server implementation. By linking to the cell 
values in Excel, or a market data source subscription within the worksheet cells,  
we can compute the theoretical option prices on the fly.

In this chapter, we will cover the following topics:

•	 Overview of the Component Object Model (COM)
•	 Understanding Excel for finance and COM
•	 Prerequisites for building a COM server
•	 Building the Black-Scholes model COM pricing server
•	 Registering and unregistering the COM server
•	 Building the Cox-Ross-Rubinstein binomial tree COM server
•	 Building the trinomial lattice model COM server
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•	 Setting up VBA functions to build a COM client in Excel
•	 Setting up parameters in Excel to invoke the COM client-server interface
•	 Computing the theoretical option prices on the fly in Excel

Overview of COM
COM allows the reuse of objects across different software and hardware 
environments to interface with each other, without the knowledge of its internal 
implementation. COM is a proprietary standard and is commonly associated with 
Microsoft's COM. COM forms the basis for Microsoft's other technologies, including 
ActiveX, COM+, and Document Component Object Model (DCOM).

COM allows an object to be created in several languages, such as C, C++, Visual 
Basic, Delphi, or Python. Using COM-aware components, COM classes are built 
as binary standards. Each COM component has its own class identifier (CLSID), 
which are globally unique identifiers (GUIDs), used for identification when used on 
a runtime framework. To locate a COM library, the Microsoft Windows registry is 
used to list all the available class and interface libraries as GUIDs.

Excel for finance
The spreadsheet application in the Microsoft Office suite was designed for statistical, 
engineering, and financial data management. In finance, Microsoft Excel is used 
as a handy tool for bond traders and an integral part of banking operations to task 
automations using VBA. For example, built-in Excel functions, such as TBILLYIELD 
and DURATION, helps you calculate the yield of a T-bill and the Macaulay duration of 
a bond and displays these values onto a cell.

Excel supports the use of COM to extend the functionality for custom tasks. This is 
achieved with the use of COM add-ins as an in-process COM server. With VBA, a 
wrapper can be created for the COM add-in function so that the COM component 
can be used as a worksheet cell formula function.

In this chapter, we will take a look at building a COM server in Python. We will then 
use Microsoft Excel, as our source of data parameters, to perform numerical pricing 
with the COM object. Using this basic example, we can then extend the functionality 
of the COM objects for many uses, not limited to real-time trading and pricing.
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Building a COM server
In this section, we are concerned with building the server component of the COM 
interface. We will first take a look at the prerequisites for building the server 
components using Python. Then, we will proceed to build an option pricing the 
COM server using some of the topics we covered in Chapter 4, Numerical Procedures.

Prerequisites
The COM interface is an industry standard by Microsoft; therefore, the following 
software is required to complete this tutorial:

•	 Microsoft Windows XP operating system or later
•	 Microsoft Excel 2003 or later
•	 Python 2.7 or later with SciPy and NumPy packages
•	 The pythoncom module

Getting the pythoncom module
The pythoncom module contains Python extensions for Microsoft Windows. The 
files are available freely as pywin32 on SourceForge at http://sourceforge.
net/projects/pywin32/files/. To download the executable file, navigate to 
the pywin32 folder, and select the latest available build. Download the installer 
executable that is compatible with your system. Note that there is one download 
package for each supported version of Python. Be sure to check for the version of 
Python installed in your environment and download the corresponding package. 
Some packages have a 32-bit and a 64-bit version available. You must download 
the one that corresponds to the Python you have installed. Even if you have a 64-
bit computer, if you installed a 32-bit version of Python, you must install the 32-bit 
version of pywin32.

Once the executable file is downloaded to your hard drive, run the installer, and 
follow the onscreen instructions to add the pythoncom module to your Python 
environment.

http://sourceforge.net/projects/pywin32/files/
http://sourceforge.net/projects/pywin32/files/
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Building the Black-Scholes model COM server
Let's build a simple COM server using the classic Black-Scholes options pricing 
model to calculate the theoretical value of a call or a put option. The calculator is 
implemented as the BlackScholes class with a method named pricer that accepts 
the current underlying price, strike price, annualized interest rate, time left to 
maturity in terms of years, volatility of the underlying instrument, and annualized 
dividend yield as its input parameters. The full COM server code in Python is given 
as follows:

""" Black-Scholes pricer COM server """
import numpy as np
import scipy.stats as stats
import pythoncom

class BlackScholes:
    _public_methods_ = ["call_pricer", "put_pricer"]
    _reg_progid_ = "BlackScholes.Pricer"
    _reg_clsid_ =  pythoncom.CreateGuid()

    def d1(self, S0, K, r, T, sigma, div):
        return (np.log(S0/K) + ((r-div) + sigma**2 / 2) * T)/ \
               (sigma * np.sqrt(T))

    def d2(self, S0, K, r, T, sigma, div):
        return (np.log(S0 / K) + ((r-div) - sigma**2 / 2) * T) / \
               (sigma * np.sqrt(T))

    def call_pricer(self, S0, K, r, T, sigma, div):
        d1 = self.d1(S0, K, r, T, sigma, div)
        d2 = self.d2(S0, K, r, T, sigma, div)
        return S0 * np.exp(-div * T) * stats.norm.cdf(d1) \
               - K * np.exp(-r * T) * stats.norm.cdf(d2)

    def put_pricer(self, S0, K, r, T, sigma, div):
        d1 = self.d1(S0, K, r, T, sigma, div)
        d2 = self.d2(S0, K, r, T, sigma, div)
        return K * np.exp(-r * T) * stats.norm.cdf(-d2) \
               - S0 * np.exp(-div * T) *stats.norm.cdf(-d1)

if __name__ == "__main__":
    # Run "python binomial_tree_am.py"
    #   to register the COM server.
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    # Run "python binomial_tree_am.py --unregister"
    #   to unregister it.
    print "Registering COM server..."
    import win32com.server.register
    win32com.server.register.UseCommandLine(BlackScholes)

Note the use of the three magic variables: _public_methods_, _reg_progid_, and 
_reg_clsid_ in the COM server object. The _public_methods_ variable defines the 
methods that are exposed to the COM clients. The _reg_progid_ variable defines 
the name of the COM server that is called from the COM client. The _reg_clsid_ 
variable contains the unique class identifier in the registry.

Registering and unregistering the COM server
Assuming that the code is saved in the black_scholes.py file, we can compile the 
COM server and register with the registry:

$ python black_scholes.py

Registering COM server…

Registered: BlackScholes.Pricer

The COM server is now accessible for COM communications.

To unregister the COM server, the additional --unregister parameter is used:

$ python black_scholes.py --unregister

Registering COM server…

Unregistered: BlackScholes.Pricer

The COM server is now unregistered and cannot be accessed by the COM clients.

Building the Cox-Ross-Rubinstein binomial 
tree model COM server
In Chapter 4, Numerical Procedures, we looked at several options pricing models. One 
such model is the Cox-Ross-Rubinstein (CRR) model using a binomial tree. Before 
we can create a second COM server based on this model, let's copy and paste these 
class files created earlier, namely, BinomialCRROption.py, BinomialTreeOption.
py, and StockOption.py, to our working directory.
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Now, let's create our COM server using the BinomialCRRCOMServer class and save it 
as binomial_crr_com.py:

""" Binomial CRR tree COM server """
from BinomialCRROption import BinomialCRROption
import pythoncom

class BinomialCRRCOMServer:
    _public_methods_ = [ 'pricer']
    _reg_progid_ = "BinomialCRRCOMServer.Pricer"
    _reg_clsid_ = pythoncom.CreateGuid()

    def pricer(self, S0, K, r, T, N, sigma,
               is_call=True, div=0., is_eu=False):
        model = BinomialCRROption(S0, K, r, T, N,
                                  {"sigma": sigma,
                                   "div": div,
                                   "is_call": is_call,
                                   "is_eu": is_eu})
        return model.price()

if __name__ == "__main__":
    print "Registering COM server..."
    import win32com.server.register
    win32com.server.register.UseCommandLine(BinomialCRRCOMServer)

Similar to our Black-Scholes COM server, here the pricer method creates an 
instance of the BinomialCRROption class and returns the calculated price from  
the CRR binomial tree model.

Building the trinomial lattice model COM 
server
In Chapter 4, Numerical Procedures, we also explored the use of a trinomial lattice in 
options pricing. Let's use this model as our third COM server. Let's copy and paste 
the related class files, namely, TrinomialLattice.py and TrinomialTreeOption.
py, to our working directory.

Create our COM server with the TrinomialLatticeCOMServer class and save it as 
trinomial_lattice_com.py:

""" Trinomial Lattice COM server """
from TrinomialLattice import TrinomialLattice
import pythoncom
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class TrinomialLatticeCOMServer:
    _public_methods_ = ['pricer']
    _reg_progid_ = "TrinomialLatticeCOMServer.Pricer"
    _reg_clsid_ = pythoncom.CreateGuid()

    def pricer(self, S0, K, r, T, N, sigma,
               is_call=True, div=0., is_eu=False):
        model = TrinomialLattice(S0, K, r, T, N,
                                 {"sigma": sigma,
                                  "div": div,
                                  "is_call": is_call,
                                  "is_eu": is_eu})
        return model.price()

if __name__ == "__main__":
    print "Registering COM server..."
    import win32com.server.register
    win32com.server.register.UseCommandLine(TrinomialLatticeCOMServer) 

Now, let's build and register our three COM server Python files with the registry:

$ python black_scholes.py

Registering COM server…

Registered: BlackScholes.Pricer

$ python binomial_crr_com.py

Registering COM server…

Registered: BinomialCRRCOMServer.Pricer

$ python trinomial_lattice_com.py

Registering COM server…

Registered: TrinomialLatticeCOMServer.Pricer

With our COM server components successfully registered with the registry, we can 
now proceed to create our COM client in Excel in the next section.
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Building the COM client in Excel
In the worksheet cells of Microsoft Excel, we can input a number of parameters for 
a particular option and numerically compute the theoretical option prices using the 
COM server components we just built in the earlier section. These functions can 
be made available in the formula cell using Visual Basic. To begin creating these 
functions, open the Visual Basic Editor from Excel by pressing the Alt + F11 keys on 
your keyboard.

Setting up the VBA code
In the Project-VBAProject toolbar window, right-click on VBAProject, select Insert, 
and click on Module to insert a new module in the Excel workbook:

 

In the code editor area, paste the following VBA code:

Function BlackScholesOptionPrice( _
     ByVal S0 As Integer, _
     ByVal K As Integer, _
     ByVal r As Double, _
     ByVal T As Double, _
     ByVal sigma As Double, _
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     ByVal dividend As Double, _
     ByVal isCall As Boolean)
     Set BlackScholes = CreateObject("BlackScholes.Pricer")
     If isCall = True Then
         answer = BlackScholes.call_pricer(S0, K, r, T, sigma, \ 
dividend)
     Else
         answer = BlackScholes.put_pricer(S0, K, r, T, sigma, \ 
dividend)
     End If
     BlackScholesOptionPrice = answer
 End Function

This will create the COM client component of the Black-Scholes model. The 
BlackScholesOptionPrice VBA function takes in a number of input parameters 
from Excel, which we will define later. The CreateObject function is then called 
and takes the BlackScholes.Pricer input string, which is effectively the name, as 
defined in the _reg_progid_ variable of the corresponding COM server component. 
In the COM server, we exposed two methods, call_pricer and put_pricer, to 
compute and return the Black-Scholes call and put option prices respectively. The 
selection of this option is determined by the isCall variable, which is true for a call 
option and false for a put option.

In the same fashion, we can create the COM client functions for our two other pricing 
methods using the following VBA code:

 Function BinomialTreeCRROptionPrice( _
    ByVal S0 As Integer, _
    ByVal K As Integer, _
    ByVal r As Double, _
    ByVal T As Double, _
    ByVal N As Integer, _
    ByVal sigma As Double, _
    ByVal isCall As Boolean, _
    ByVal dividend As Double)
    Set BinCRRTree = CreateObject("BinomialCRRCOMServer.Pricer")
    answer = BinCRRTree.pricer(S0, K, r, T, N, sigma, isCall, _
        dividend, True)
    BinomialTreeCRROptionPrice = answer
End Function 
Function TrinomialLatticeOptionPrice( _
    ByVal S0 As Integer, _
    ByVal K As Integer, _
    ByVal r As Double, _
    ByVal T As Double, _
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    ByVal N As Integer, _
    ByVal sigma As Double, _
    ByVal isCall As Boolean, _
    ByVal dividend As Double)
    Set TrinomialLattice = _
        CreateObject("TrinomialLatticeCOMServer.Pricer")
    answer = TrinomialLattice.pricer(S0, K, r, T, N, sigma, _
        isCall, dividend, True)
    TrinomialLatticeOptionPrice = answer
End Function

Here, the BinomialTreeCRROptionPrice and TrinomialLatticeOptionPrice 
VBA functions are defined. Similar to the BlackScholesOptionPrice function, the 
CreateObject function takes in the string value of BinomialCRRCOMServer.Pricer 
and TrinomialLatticeCOMServer.Pricer, as defined in the _reg_progid_ variable 
in its respective COM server.

We can compile the code by selecting Debug from the toolbar menu and clicking on 
Compile VBAProject:

When the code has been successfully compiled, close the Visual Basic Editor window 
and return to Excel to input our parameters.

Setting up the cells
Let's assume that we would like to price an option with a strike price of 50. The 
current underlying price is 50 with a volatility of 0.5 and does not pay dividends. 
The risk-free rate is 0.05 and the time to maturity is 6 months. We will start with a 
two-step binomial tree and trinomial lattice with N=2.
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In Excel, set up the following cells and values:

A B
1 Parameter Value
2 S0 50
3 K 50
4 R 0.05
5 T 0.5
6 N 2
7 sigma 0.5
8 Dividend 0.00

We are now ready to price our option using dynamic numerical pricing with COM.

In a new row, set up the following cells and values:

A B
10 Call
11 Is call option? TRUE
12 Black-Scholes =BlackScholesOptionPrice(B2,B3,B4,B5,B7,B8,B11)
13 Binomial Tree 

CRR
=BinomialTreeCRROptionPrice(B2,B3,B4,B5,B6,B7,B
11,B8)

14 Trinomial Lattice =TrinomialLatticeOptionPrice(B2,B3,B4,B5,B6,B7,B1
1,B8)

Notice that in cells B12 to B14, we are calling the functions that we have defined in 
the VBA editor. The input values are derived from the values of cells B2 to B8. The 
Boolean value in B11 determines whether we are pricing a call option or a put option 
when calling the COM server. Since we are pricing the call options in column B, let's 
add another column, C to price the put options:

A C
10 Put Price
11 Is call option? FALSE
12 Black-Scholes =BlackScholesOptionPrice(B2,B3,B4,B5,B7,B8,C11)
13 Binomial Tree 

CRR
=BinomialTreeCRROptionPrice(B2,B3,B4,B5,B6,B7,C11
,B8)

14 Trinomial Lattice =TrinomialLatticeOptionPrice(B2,B3,B4,B5,B6,B7,C11,B8)
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The formulas are the same, as in the previous table, with the exception of the isCall 
cell reference to C11 instead of B11. This allows us to price a put option.

Our Excel spreadsheet should look something like this:

The call option prices, as computed by the Black-Scholes model, the binomial  
tree with CRR parameters, and the trinomial lattice model, are 7.5636, 6.7734,  
and 7.1468 respectively. Likewise, the put option prices are 6.3291, 5.8685, and  
6.0823 respectively.
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What happens when we change the value of N to a bigger value?

We can see that the values of the binomial tree by the CRR model and the trinomial 
lattice model converge to the values by the Black-Scholes model as the number of 
tree step increases.

What else can I do with COM?
On changing the values of N, we can see that the values from our custom-defined 
functions changes on the fly. This makes it possible for dynamic computations of 
securities, or even real-time numerical pricing, when connected to a market data 
feed, where values such as S0 or K are changing every second.

The COM server components are separated from each other. Using Python, we can 
change the implementation of the COM server using the Python modules, such as 
NumPy or SciPy, to achieve certain aspects of numerical pricing without relying 
too much on Excel's built-in functions. This also means that we can interchange and 
interface components that are not related to Excel. The COM model simply provides 
a transparent bridge between these components and Excel.
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Summary
In this chapter, we looked at the use of the Component Object Model (COM) to allow 
the reuse of objects across different software and hardware environments to interface 
with each other, without the knowledge of its internal implementation.

To build the server component of the COM interface, we used the pythoncom 
module to create a Black-Scholes pricing COM server with the three magic variables: 
_public_methods_, _reg_progid_, and _reg_clsid_. Using topics in Chapter 4, 
Numerical Procedures, we created COM server components using the binomial tree 
by the CRR model and trinomial lattice model. We learned how to register and 
unregister these COM server components with the Windows registry.

In Microsoft Excel, we can input a number of parameters for a particular option and 
numerically compute the theoretical option prices using the COM server components 
we built. These functions are made available in the formula cells using Visual Basic. 
We created the Black-Scholes model, binomial tree CRR model, and trinomial lattice 
model COM client VBA functions. These functions accept the same input values 
from the spreadsheet cells to perform numerical pricing on the COM server. We also 
saw how to update the input parameters in the spreadsheet that dynamically update 
the option prices on the fly.
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