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Preface
"Data analysis is Python's killer app."

                                                                                                         – Unknown

Data analysis has a rich history in the natural, biomedical, and social sciences.  
You may have heard of Big Data. Although, it's hard to give a precise definition  
of Big Data, we should be aware of its impact on data analysis efforts. Currently,  
we have the following trends associated with Big Data:

• The world's population continues to grow
• More and more data is collected and stored
• The number of transistors that can be put on a computer chip cannot  

grow indefinitely
• Governments, scientists, industry, and individuals have a growing  

need to learn from data

Data analysis has gained popularity lately due to the hype around Data Science.  
Data analysis and Data Science attempt to extract information from data. For that 
purpose, we use techniques from statistics, machine learning, signal processing, 
natural language processing, and computer science.

A mind map visualizing Python software that can be used for data analysis can be 
found at http://www.xmind.net/m/WvfC/. The first thing that we should notice 
is that the Python ecosystem is very mature. It includes famous packages such as 
NumPy, SciPy, and matplotlib. This should not come as a surprise since Python 
has been around since 1989. Python is easy to learn and use, less verbose than other 
programming languages, and very readable. Even if you don't know Python, you 
can pick up the basics within days, especially if you have experience in another 
programming language. To enjoy this book, you don't need more than the basics. 
There are plenty of books, courses, and online tutorials that teach Python.

http://www.xmind.net/m/WvfC/
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What this book covers
This book starts as a tutorial on NumPy, SciPy, matplotlib, and pandas. These are 
open source Python packages useful for numerical work, data wrangling, and 
visualization. Combined, they can compete with MATLAB, Mathematica, and R. 
The second half of the book teaches more advanced topics such as signal processing, 
databases, text analysis, machine learning, interoperability, and performance tuning.

Chapter 1, Getting Started with Python Libraries, guides us to achieve a successful 
installation of the numerical Python software and set it up step by step. Also,  
we will create a small application.

Chapter 2, NumPy Arrays, introduces us to NumPy fundamentals and arrays.  
By the end of this chapter, we will have basic understanding of NumPy arrays  
and the associated functions.

Chapter 3, Statistics and Linear Algebra, gives a quick overview of linear algebra  
and statistical functions.

Chapter 4, pandas Primer, provides a tutorial on basic pandas functionality where  
we learn about pandas data structures and operations.

Chapter 5, Retrieving, Processing, and Storing Data, explains how to acquire data in 
various formats and how to clean raw data and store it.

Chapter 6, Data Visualization, teaches how to plot data with matplotlib.

Chapter 7, Signal Processing and Time Series, contains time series and signal processing 
examples using sunspot cycles data. The examples mostly use NumPy/SciPy, along 
with statsmodels in at least one example.

Chapter 8, Working with Databases, provides information about various databases 
(relational and NoSQL) and related APIs.

Chapter 9, Analyzing Textual Data and Social Media, analyzes texts for sentiment 
analysis and topics extraction. A small example is also given of network analysis.

Chapter 10, Predictive Analytics and Machine Learning, explains artificial intelligence 
with weather prediction as a running example and mostly uses scikit-learn. 
However, some machine learning algorithms are not covered by scikit-learn,  
so for those, we use other APIs.

Chapter 11, Environments Outside the Python Ecosystem and Cloud Computing,  
gives various examples on how to integrate existing code not written in Python. 
Also, setup in the Cloud will be demonstrated.
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Chapter 12, Performance Tuning, Profiling, and Concurrency, gives hints on  
improving performance with profiling and Cythoning as key techniques.  
For multicore, distributed systems, we discuss the relevant frameworks too.

Appendix A, Key Concepts, serves as a glossary containing short descriptions  
of key concepts found throughout the book.

Appendix B, Useful Functions, gives an overview of functions used in the book.

Appendix C, Online Resources, lists links to documentation, forums, articles,  
and other important information.

What you need for this book
The code examples in this book should work on most modern operating  
systems. For all chapters, Python 2 and pip is required. To install Python, go to 
https://wiki.python.org/moin/BeginnersGuide/Download. To install pip,  
go to http://pip.readthedocs.org/en/latest/installing.html. Instructions  
to install software are given throughout the chapters. Most of the time, we need to 
run the following command with admin privileges:

    $ pip install <some software>

The following is a list of software used for the examples and versions used for  
testing purposes:

• NumPy 1.8.1
• SciPy 0.14.0
• matplotlib 1.3.1
• IPython 2.0.0
• pandas Version 0.13.1
• tables 3.1.1
• numexpr 2.4
• openpyxl 2.0.3
• XlsxWriter 0.5.5
• xlrd 0.9.3
• feedparser 5.1.3
• Beautiful Soup 4.3.2
• StatsModels 0.6.0
• SQLAlchemy 0.9.6

https://wiki.python.org/moin/BeginnersGuide/Download
http://pip.readthedocs.org/en/latest/installing.html
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• Pony 0.5.1
• dataset 0.5.4
• MongoDB 2.6.3
• PyMongo 2.7.1
• Redis server 2.8.12
• Redis 2.10.1
• Cassandra 2.0.9
• Java 7
• NLTK 2.0.4
• scikit-learn 0.15.0
• NetworkX 1.9
• DEAP 1.0.1
• theanets 0.2.0
• Graphviz 2.36.0
• pydot2 1.0.33
• Octave 3.8.0
• R 3.1.1
• rpy2 2.4.2
• JPype 0.5.5.2
• Java 7
• SWIG 3.02
• PCRE 8.35
• Boost 1.56.0
• gfortran 4.9.0
• GAE for Python 2.7
• gprof2dot 2014.08.05
• line_profiler beta
• Cython 0.20.0
• cytoolz 0.7.0
• Joblib 0.8.2
• Bottleneck 0.8.0
• Jug 0.9.3
• MPI 1.8.1
• mpi4py 1.3.1
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Of course, it's not necessary for you to have the same version of the software. 
Usually, the latest version available should work.

Some of the software listed are used for a single example; 
therefore, please check first whether the example is relevant 
for you before installing the software.

To uninstall Python packages installed with pip, use the following command:

   $ pip uninstall <some software>

Who this book is for
This book is for people with basic knowledge of Python and Mathematics who want 
to learn how to use Python software to analyze data. We try to keep things simple, 
but it's not possible to cover all the topics in great detail. It may be useful for you to 
refresh your knowledge of Mathematics via Khan Academy, Coursera, or Wikipedia.

I would recommend the following books by Packt Publishing for further reading:

• Building Machine Learning Systems with Python, Willi Richert and Luis Pedro 
Coelho (2013)

• Learning Cython Programming, Philip Herron (2013)
• Learning NumPy Array, Ivan Idris (2014)
• Learning scikit-learn: Machine Learning in Python, Raúl Garreta and  

Guillermo Moncecchi (2013)
• Learning SciPy for Numerical and Scientific Computing,  

Francisco J. Blanco-Silva (2013)
• Matplotlib for Python Developers, Sandro Tosi (2009)
• NumPy Beginner's Guide - Second Edition, Ivan Idris (2013)
• NumPy Cookbook, Ivan Idris (2012)
• Parallel Programming with Python, Jan Palach (2014)
• Python Data Visualization Cookbook, Igor Milovanović (2013)
• Python for Finance, Yuxing Yan (2014)
• Python Text Processing with NLTK 2.0 Cookbook, Jacob Perkins (2010)
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Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Notice that numpysum() does not need a for loop."

A block of code is set as follows:

def pythonsum(n):
   a = range(n)
   b = range(n)
   c = []

   for i in range(len(a)):
       a[i] = i ** 2
       b[i] = i ** 3
       c.append(a[i] + b[i])

   return c

Any command-line input or output is written as follows:

$ yum install python-numpy

New terms and important words are shown in bold. Words that you see on  
the screen, in menus or dialog boxes for example, appear in the text like this:  
"Click on the Next button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to  
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
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Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring  
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.



Getting Started with  
Python Libraries

Let's get started. We can find a mind map describing software that can be used for 
data analysis at http://www.xmind.net/m/WvfC/. Obviously, we can't install all of 
this software in this chapter. We will install NumPy, SciPy, matplotlib, and IPython 
on different operating systems and have a look at some simple code that uses NumPy.

NumPy is a fundamental Python library that provides numerical arrays and functions.

SciPy is a scientific Python library, which supplements and slightly overlaps NumPy. 
NumPy and SciPy historically shared their code base but were later separated.

matplotlib is a plotting library based on NumPy. You can read more about matplotlib 
in Chapter 6, Data Visualization.

IPython provides an architecture for interactive computing. The most notable part of 
this project is the IPython shell. We will cover the IPython shell later in this chapter.

Installation instructions for the other software we need will be given throughout  
the book at the appropriate time. At the end of this chapter, you will find pointers  
on how to find additional information online if you get stuck or are uncertain about 
the best way to solve problems.

In this chapter, we will cover:

• Installing Python, SciPy, matplotlib, IPython, and NumPy on Windows, 
Linux, and Macintosh

• Writing a simple application using NumPy arrays
• Getting to know IPython
• Online resources and help

http://www.xmind.net/m/WvfC/
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Software used in this book
The software used in this book is based on Python, so you are required to have Python 
installed. On some operating systems, Python is already installed. You, however, need 
to check whether the Python version is compatible with the software version you 
want to install. There are many implementations of Python, including commercial 
implementations and distributions. In this book, we will focus on the standard 
CPython implementation, which is guaranteed to be compatible with NumPy.

You can download Python from https://www.python.org/
download/. On this website, we can find installers for Windows and 
Mac OS X as well as source archives for Linux, Unix, and Mac OS X.

The software we will install in this chapter has binary installers for Windows, 
various Linux distributions, and Mac OS X. There are also source distributions if you 
prefer that. You need to have Python 2.4.x or above installed on your system. Python 
2.7.x is currently the best Python version to have because most Scientific Python 
libraries support it. Python 2.7 will be supported and maintained until 2020. After 
that, we will have to switch to Python 3.

Installing software and setup
We will learn how to install and set up NumPy, SciPy, matplotlib, and IPython on 
Windows, Linux and Mac OS X. Let's look at the process in detail.

On Windows
Installing on Windows is, fortunately, a straightforward task that we will cover in 
detail. You only need to download an installer and a wizard will guide you through 
the installation steps. We will give you steps to install NumPy here. The steps to 
install the other libraries are similar. The actions we will take are as follows:

1. Download installers for Windows from the SourceForge website (refer to  
the following table). The latest release versions may change, so just choose 
the one that fits your setup best.

https://www.python.org/download/
https://www.python.org/download/
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Library URL Latest 
version

NumPy http://sourceforge.net/projects/numpy/files/ 1.8.1
SciPy http://sourceforge.net/projects/scipy/files/ 0.14.0
matplotlib http://sourceforge.net/projects/matplotlib/files/ 1.3.1
IPython http://archive.ipython.org/release/ 2.0.0

2. Choose the appropriate version. In this example, we chose  
numpy-1.8.1-win32-superpack-python2.7.exe.

3. Open the EXE installer by double-clicking on it.
4. Now, we can see a description of NumPy and its features. Click on the  

Next button.
If you have Python installed, it should automatically be detected. If it is  
not detected, maybe your path settings are wrong.

At the end of this chapter, resources are listed just in case you have 
problems installing NumPy.

5. Click on the Next button if Python is found; otherwise, click on the Cancel 
button and install Python (NumPy cannot be installed without Python).  
Click on the Next button. This is the point of no return. Well, kind of, but  
it is best to make sure that you are installing to the proper directory, and  
so on and so forth. Now the real installation starts. This may take a while.

The situation around installers is rapidly evolving. Other alternatives 
exist in various stages of maturity (see http://www.scipy.org/
install.html). It might be necessary to put the msvcp71.dll file 
in your system32 directory located at C:\Windows\. You can get 
it from http://www.dll-files.com/dllindex/dll-files.
shtml?msvcp71.

http://sourceforge.net/projects/numpy/files/
http://sourceforge.net/projects/scipy/files/
http://sourceforge.net/projects/matplotlib/files/
http://archive.ipython.org/release/
http://www.scipy.org/install.html
http://www.scipy.org/install.html
http://www.dll-files.com/dllindex/dll-files.shtml?msvcp71
http://www.dll-files.com/dllindex/dll-files.shtml?msvcp71
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On Linux
Installing the recommended software on Linux depends on the distribution you 
have. We will discuss how you would install NumPy from the command line; 
 you could probably use graphical installers depending on your distribution  
(distro). The commands to install matplotlib, SciPy, and IPython are the same;  
only the package names are different. Installing matplotlib, SciPy, and IPython  
is recommended but optional.

Most Linux distributions have NumPy packages. We will go through the necessary 
commands for some of the popular Linux distributions as follows:

• Run the following instructions from the command line to install NumPy  
on Red Hat:
$ yum install python-numpy

• To install NumPy on Mandriva, run the following command-line instruction:
$ urpmi python-numpy

• To install NumPy on Gentoo, run the following command-line instruction:
$ sudo emerge numpy

• To install NumPy on Debian or Ubuntu, we need to type the following:
$ sudo apt-get install python-numpy

The following table gives an overview of the Linux distributions and corresponding 
package names for NumPy, SciPy, matplotlib, and IPython:

Linux 
distribution

NumPy SciPy matplotlib IPython

Arch Linux python-
numpy

python-
scipy

python-
matplotlib

Ipython

Debian python-
numpy

python-
scipy

python-
matplotlib

Ipython

Fedora numpy python-
scipy

python-
matplotlib

Ipython

Gentoo dev-python/
numpy

scipy matplotlib ipython

openSUSE python-
numpy, 
python-
numpy-devel

python-
scipy

python-
matplotlib

ipython

Slackware numpy scipy matplotlib ipython
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On Mac OS X
You can install NumPy, matplotlib, and SciPy on Mac OS X with a graphical installer 
or from the command line with a port manager, such as MacPorts or Fink, depending 
on your preference. The prerequisite is to install XCode, as it is not part of OS X 
releases. We will install NumPy with a GUI installer using the following steps:

1. We can get a NumPy installer from the SourceForge website at  
http://sourceforge.net/projects/numpy/files/. Similar files  
exist for matplotlib and SciPy.

2. Just change numpy in the previous URL to scipy or matplotlib to get 
installers of the respective libraries. IPython didn't have a GUI installer  
at the time of writing this.

3. Download the appropriate DMG file; usually the latest one is the best.
Another alternative is SciPy Superpack  
(https://github.com/fonnesbeck/ScipySuperpack).

Whichever option you choose, it is important to make sure that updates that impact 
the system Python library don't negatively influence already-installed software 
by not building against the Python library provided by Apple. Install NumPy, 
matplotlib, and SciPy using the following steps:

1. Open the DMG file (in this example, numpy-1.8.1-py2.7-python.org-
macosx10.6.dmg).

2. Double-click on the icon of the opened box—the one with a subscript  
that ends with .mpkg. We will be presented with the welcome screen  
of the installer.

3. Click on the Continue button to go to the Read Me screen, where we  
will be presented with a short description of NumPy.

4. Click on the Continue button to go to the License screen.
5. Read the license, click on the Continue button, and then click on the  

Accept button when prompted to accept the license. Continue through the 
screens that follow from there, and click on the Finish button at the end.

http://sourceforge.net/projects/numpy/files/
https://github.com/fonnesbeck/ScipySuperpack
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Alternatively, we can install the libraries through the MacPorts route, with Fink  
or Homebrew. The following installation commands install all these packages.  
We only need NumPy for all the tutorials in this book, so please omit the packages 
you are not interested in.

• To install with MacPorts, type in the following command:
$ sudo port install py-numpy py-scipy py-matplotlib py-ipython

• Fink also has packages for NumPy, such as scipy-core-py24, scipy-core-
py25, and scipy-core-py26. The SciPy packages are scipy-py24, scipy-
py25, and scipy-py26. We can install NumPy and other recommended 
packages that we will be using in this book for Python 2.6 with the  
following command:
$ fink install scipy-core-py26 scipy-py26 matplotlib-py26

Building NumPy, SciPy, matplotlib, and 
IPython from source
As a last resort or if we want to have the latest code, we can build from source.  
In practice, it shouldn't be that hard, although depending on your operating system, 
you might run into problems. As operating systems and related software are rapidly 
evolving, in such cases, the best you can do is search online or ask for help. In this 
chapter, we give pointers on good places to look for help.

The source code can be retrieved with git or as an archive from GitHub. The steps  
to install NumPy from source are straightforward and given here. We can retrieve 
the source code for NumPy with git as follows:

$ git clone git://github.com/numpy/numpy.git numpy

There are similar commands for SciPy, matplotlib, and IPython 
(refer to the table that follows after this piece of information). The 
IPython source code can be downloaded from https://github.
com/ipython/ipython/releases as a source archive or ZIP 
file. You can then unpack it with your favorite tool or with the 
following command:
$ tar -xzf ipython.tar.gz

https://github.com/ipython/ipython/releases
https://github.com/ipython/ipython/releases
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Please refer to the following table for the git commands and source archive/zip links:

Library Git command Tarball/zip URL
NumPy git clone git://github.com/

numpy/numpy.git numpy
https://github.com/numpy/
numpy/releases

SciPy git clone http://github.com/
scipy/scipy.git scipy

https://github.com/scipy/
scipy/releases

matplotlib git clone git://github.com/
matplotlib/matplotlib.git

https://github.com/
matplotlib/matplotlib/
releases

IPython git clone --recursive 
https://github.com/ipython/
ipython.git

https://github.com/ipython/
ipython/releases

Install on /usr/local with the following command from the source code directory:

$ python setup.py build
$ sudo python setup.py install --prefix=/usr/local

To build, we need a C compiler such as GCC and the Python header files in the 
python-dev or python-devel package.

Installing with setuptools
If you have setuptools or pip, you can install NumPy, SciPy, matplotlib, and IPython 
with the following commands. For each library, we give two commands, one for 
setuptools and one for pip. You only need to choose one command per pair:

$ easy_install numpy
$ pip install numpy

$ easy_install scipy
$ pip install scipy

$ easy_install matplotlib
$ pip install matplotlib

$ easy_install ipython
$ pip install ipython

It may be necessary to prepend sudo to these commands if your current user doesn't 
have sufficient rights on your system.

https://github.com/numpy/numpy/releases
https://github.com/numpy/numpy/releases
https://github.com/scipy/scipy/releases
https://github.com/scipy/scipy/releases
https://github.com/matplotlib/matplotlib/releases
https://github.com/matplotlib/matplotlib/releases
https://github.com/matplotlib/matplotlib/releases
https://github.com/ipython/ipython/releases
https://github.com/ipython/ipython/releases
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NumPy arrays
After going through the installation of NumPy, it's time to have a look at NumPy 
arrays. NumPy arrays are more efficient than Python lists when it comes to numerical 
operations. NumPy arrays are, in fact, specialized objects with extensive optimizations. 
NumPy code requires less explicit loops than equivalent Python code. This is based  
on vectorization.

If we go back to highschool mathematics, then we should remember the concepts 
of scalars and vectors. The number 2, for instance, is a scalar. When we add 2 to 2, 
we are performing scalar addition. We can form a vector out of a group of scalars. 
In Python programming terms, we will then have a one-dimensional array. This 
concept can, of course, be extended to higher dimensions. Performing an operation 
on two arrays, such as addition, can be reduced to a group of scalar operations. In 
straight Python, we will do that with loops going through each element in the first 
array and adding it to the corresponding element in the second array. However, this 
is more verbose than the way it is done in mathematics. In mathematics, we treat the 
addition of two vectors as a single operation. That's the way NumPy arrays do it too, 
and there are certain optimizations using low-level C routines, which make these 
basic operations more efficient. We will cover NumPy arrays in more detail in the 
following chapter, Chapter 2, NumPy Arrays.

A simple application
Imagine that we want to add two vectors called a and b. The word vector is used here 
in the mathematical sense, which means a one-dimensional array. We will learn in 
Chapter 3, Statistics and Linear Algebra, about specialized NumPy arrays that represent 
matrices. The vector a holds the squares of integers 0 to n; for instance, if n is equal to 
3, a contains 0, 1, or 4. The vector b holds the cubes of integers 0 to n, so if n is equal to 
3, then the vector b is equal to 0, 1, or 8. How would you do that using plain Python? 
After we come up with a solution, we will compare it with the NumPy equivalent.

The following function solves the vector addition problem using pure Python 
without NumPy:

def pythonsum(n):
   a = range(n)
   b = range(n)
   c = []

   for i in range(len(a)):
       a[i] = i ** 2
       b[i] = i ** 3
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       c.append(a[i] + b[i])

   return c

The following is a function that solves the vector addition problem with NumPy:

def numpysum(n):
  a = numpy.arange(n) ** 2
  b = numpy.arange(n) ** 3
  c = a + b
  return c

Notice that numpysum() does not need a for loop. Also, we used the arange() 
function from NumPy, which creates a NumPy array for us with integers from  
0 to n. The arange() function was imported; that is why it is prefixed with numpy.

Now comes the fun part. Remember that it was mentioned in the Preface that NumPy 
is faster when it comes to array operations. How much faster is Numpy, though? The 
following program will show us by measuring the elapsed time in microseconds for 
the numpysum() and pythonsum() functions. It also prints the last two elements of 
the vector sum. Let's check that we get the same answers using Python and NumPy:

#!/usr/bin/env/python

import sys
from datetime import datetime
import numpy as np

"""
 This program demonstrates vector addition the Python way.
 Run from the command line as follows

  python vectorsum.py n

 where n is an integer that specifies the size of the vectors.

 The first vector to be added contains the squares of 0 up to n.
 The second vector contains the cubes of 0 up to n.
 The program prints the last 2 elements of the sum and the elapsed  
time.
"""

def numpysum(n):
   a = np.arange(n) ** 2
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   b = np.arange(n) ** 3
   c = a + b

   return c

def pythonsum(n):
   a = range(n)
   b = range(n)
   c = []

   for i in range(len(a)):
       a[i] = i ** 2
       b[i] = i ** 3
       c.append(a[i] + b[i])

   return c

size = int(sys.argv[1])

start = datetime.now()
c = pythonsum(size)
delta = datetime.now() - start
print "The last 2 elements of the sum", c[-2:]
print "PythonSum elapsed time in microseconds", delta.microseconds

start = datetime.now()
c = numpysum(size)
delta = datetime.now() - start
print "The last 2 elements of the sum", c[-2:]
print "NumPySum elapsed time in microseconds", delta.microseconds

The output of the program for 1000, 2000, and 3000 vector elements is as follows:

$ python vectorsum.py 1000

The last 2 elements of the sum [995007996, 998001000]

PythonSum elapsed time in microseconds 707

The last 2 elements of the sum [995007996 998001000]

NumPySum elapsed time in microseconds 171

$ python vectorsum.py 2000

The last 2 elements of the sum [7980015996, 7992002000]
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PythonSum elapsed time in microseconds 1420

The last 2 elements of the sum [7980015996 7992002000]

NumPySum elapsed time in microseconds 168

$ python vectorsum.py 4000

The last 2 elements of the sum [63920031996, 63968004000]

PythonSum elapsed time in microseconds 2829

The last 2 elements of the sum [63920031996 63968004000]

NumPySum elapsed time in microseconds 274

Clearly, NumPy is much faster than the equivalent normal Python code. One thing 
is certain; we get the same results whether we are using NumPy or not. However, 
the result that is printed differs in representation. Notice that the result from the 
numpysum() function does not have any commas. How come? Obviously, we are 
not dealing with a Python list but with a NumPy array. We will learn more about 
NumPy arrays in the next chapter, Chapter 2, NumPy Arrays.

Using IPython as a shell
Scientists, data analysts, and engineers are used to experimenting. IPython was 
created by scientists with experimentation in mind. The interactive environment that 
IPython provides is viewed by many as a direct answer to MATLAB, Mathematica, 
and Maple.

The following is a list of features of the IPython shell:

• Tab completion, which helps you find a command
• History mechanism
• Inline editing
• Ability to call external Python scripts with %run
• Access to system commands
• The pylab switch
• Access to the Python debugger and profiler

The following list describes how to use the IPython shell:

• The pylab switch: The pylab switch automatically imports all the Scipy, 
NumPy, and matplotlib packages. Without this switch, we would have to 
import these packages ourselves.
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All we need to do is enter the following instruction on the command line:
$ ipython -pylab

Type "copyright", "credits" or "license" for more information.

IPython 2.0.0-dev -- An enhanced Interactive Python.

?         -> Introduction and overview of IPython's features.

%quickref -> Quick reference.

help      -> Python's own help system.

object?   -> Details about 'object', use 'object??' for extra  
details.

Welcome to pylab, a matplotlib-based Python environment  
[backend: MacOSX].

For more information, type 'help(pylab)'.

In [1]: quit()

The quit() function or Ctrl + D quits the IPython shell.

• Saving a session: We might want to be able to go back to our experiments. In 
IPython, it is easy to save a session for later use, with the following command:
In [1]: %logstart

Activating auto-logging. Current session state plus future  
input saved.

Filename       : ipython_log.py

Mode           : rotate

Output logging : False

Raw input log  : False

Timestamping   : False

State          : active

Logging can be switched off as follows:

In [9]: %logoff

Switching logging OFF
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• Executing system shell command: Execute a system shell command in  
the default IPython profile by prefixing the command with the ! symbol.  
For instance, the following input will get the current date:
In [1]: !date

In fact, any line prefixed with ! is sent to the system shell. Also, we can store 
the command output as shown here:

In [2]: thedate = !date

In [3]: thedate

• Displaying history: We can show the history of commands with the %hist 
command, for example:
In [1]: a = 2 + 2

In [2]: a

Out[2]: 4

In [3]: %hist

a = 2 + 2

a

%hist

This is a common feature in Command Line Interface (CLI) environments. 
We can also search through the history with the -g switch as follows:
In [5]: %hist -g a = 2
    1: a = 2 + 2

Downloading the example code
You can download the example code files for all the Packt 
books you have purchased from your account at http://
www.packtpub.com. If you purchased this book elsewhere, 
you can visit http://www.packtpub.com/support and 
register to have the files e-mailed directly to you.

We saw a number of so-called magic functions in action. These functions start with  
the % character. If the magic function is used on a line by itself, the % prefix is optional.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
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Reading manual pages
When we are in IPython's pylab mode ($ ipython –pylab), we can open manual 
pages for NumPy functions with the help command. It is not necessary to know the 
name of a function. We can type a few characters and then let tab completion do its 
work. Let's, for instance, browse the available information for the arange() function.

We can browse the available information in either of the following two ways:

• Calling the help function: Call the help command. Type in a few characters 
of the function and press the Tab key.

• Querying with a question mark: Another option is to append a question 
mark to the function name. You will then, of course, need to know the 
function name, but you don't have to type help, for example:
In [3]: arange?

Tab completion is dependent on readline, so you need to make sure  
that it is installed. It can be installed with setuptools with one of the 
following commands:
$ easy_install readline

$ pip install readline

The question mark gives you information from docstrings.

IPython notebooks
If you have browsed the Internet looking for information on Python, it is very likely 
that you have seen IPython notebooks. These are web pages with text, charts, and 
Python code in a special format. Have a look at these notebook collections at the 
following links:

• https://github.com/ipython/ipython/wiki/A-gallery-of-
interesting-IPython-Notebooks

• http://nbviewer.ipython.org/github/ipython/ipython/tree/2.x/
examples/

https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
http://nbviewer.ipython.org/github/ipython/ipython/tree/2.x/examples/
http://nbviewer.ipython.org/github/ipython/ipython/tree/2.x/examples/
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Often, the notebooks are used as an educational tool or to demonstrate Python 
software. We can import or export notebooks either from plain Python code or using 
the special notebook format. The notebooks can be run locally, or we can make them 
available online by running a dedicated notebook server. Certain cloud computing 
solutions, such as Wakari and PiCloud, allow you to run notebooks in the Cloud. 
Cloud computing is one of the topics of Chapter 11, Environments Outside the Python 
Ecosystem and Cloud Computing.

Where to find help and references
The main documentation website for NumPy and SciPy is at http://docs.scipy.
org/doc/. Through this web page, we can browse the NumPy reference guide at  
http://docs.scipy.org/doc/numpy/reference/ and the user guide as well as 
several tutorials.

The popular Stack Overflow software development forum has hundreds of questions 
tagged numpy. To view them, go to http://stackoverflow.com/questions/
tagged/numpy.

This might be stating the obvious, but numpy can also be substituted with scipy, 
ipython, or almost anything of interest. If you are really stuck with a problem or you 
want to be kept informed of NumPy development, you can subscribe to the NumPy 
discussion mailing list. The e-mail address is numpy-discussion@scipy.org. The 
number of e-mails per day is not too high, and there is almost no spam to speak of. 
Most importantly, developers actively involved with NumPy also answer questions 
asked on the discussion group. The complete list can be found at http://www.
scipy.org/Mailing_Lists.

For IRC users, there is an IRC channel on irc://irc.freenode.net. The channel 
is called #scipy, but you can also ask NumPy questions since SciPy users also have 
knowledge of NumPy, as SciPy is based on NumPy. There are at least 50 members 
on the SciPy channel at all times.

Summary
In this chapter, we installed NumPy, SciPy, matplotlib, and IPython that we will 
be using in tutorials. We got a vector addition program working and convinced 
ourselves that NumPy offers superior performance. In addition, we explored the 
available documentation and online resources.

In the next chapter, Chapter 2, NumPy Arrays, we will take a look under the hood of 
NumPy and explore some fundamental concepts including arrays and data types.

http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/numpy/reference/
http://stackoverflow.com/questions/tagged/numpy
http://stackoverflow.com/questions/tagged/numpy
http://www.scipy.org/Mailing_Lists
http://www.scipy.org/Mailing_Lists
irc://irc.freenode.net




NumPy Arrays
After installing NumPy and other key Python-programming libraries and getting 
some code to work, it's time to pass over NumPy arrays. This chapter acquaints you 
with the fundamentals of NumPy and arrays. At the end of this chapter, you will 
have a basic understanding of NumPy arrays and their related functions.

The topics we will address in this chapter are as follows:

• Data types
• Array types
• Type conversions
• Creating arrays
• Indexing
• Fancy indexing
• Slicing
• Manipulating shapes

The NumPy array object
NumPy has a multidimensional array object called ndarray. It consists of two parts, 
which are as follows:

• The actual data
• Some metadata describing the data

The bulk of array procedures leaves the raw information unaffected; the sole facet 
that varies is the metadata.
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We have already discovered in the preceding chapter how to produce an array by 
applying the arange() function. Actually, we made a one-dimensional array that 
held a set of numbers. The ndarray can have more than a single dimension.

The advantages of NumPy arrays
The NumPy array is, in general, homogeneous (there is a particular record array 
type that is heterogeneous)—the items in the array have to be of the same type. The 
advantage is that if we know that the items in an array are of the same type, it is easy 
to ascertain the storage size needed for the array. NumPy arrays can execute vectorized 
operations, processing a complete array, in contrast to Python lists, where you usually 
have to loop through the list and execute the operation on each element. Also, NumPy 
utilizes an optimized C API to make them particularly quick.

NumPy arrays are indexed just like in Python, commencing from 0. Data types are 
represented by special objects. These objects will be discussed comprehensively 
further in this chapter.

We will make an array with the arange() subroutine again (examine 
arrayattributes.py from this book's code). In this chapter, you will see snippets 
from IPython sessions where NumPy is already imported. Here's how to get the  
data type of an array:

In: a = arange(5)
In: a.dtype
Out: dtype('int64')

The data type of the array a is int64 (at least on my computer), but you may get 
int32 as the output if you are using 32-bit Python. In both the cases, we are dealing 
with integers (64 bit or 32 bit). Besides the data type of an array, it is crucial to know 
its shape. The example in Chapter 1, Getting Started with Python Libraries, demonstrated 
how to create a vector (actually, a one-dimensional NumPy array). A vector is 
commonly used in mathematics but most of the time we need higher-dimensional 
objects. Let's find out the shape of the vector we produced a few minutes ago:

In: a
Out: array([0, 1, 2, 3, 4])
In: a.shape
Out: (5,)

As you can see, the vector has five components with values ranging from 0 to 4.  
The shape property of the array is a tuple; in this instance, a tuple of 1 element, 
which holds the length in each dimension.
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Creating a multidimensional array
Now that we know how to create a vector, we are set to create a multidimensional 
NumPy array. After we produce the matrix, we will again need to show its shape 
(check arrayattributes.py from this book's code bundle), as demonstrated in the 
following code snippets:

1. Create a multidimensional array as follows:
In: m = array([arange(2), arange(2)])
In: m
Out:
array([[0, 1],
       [0, 1]])

2. Show the array shape as follows:

In: m.shape
Out: (2, 2)

We made a 2 x 2 array with the arange() subroutine. The array() function creates  
an array from an object that you pass to it. The object has to be an array, for example,  
a Python list. In the previous example, we passed a list of arrays. The object is the 
only required parameter of the array() function. NumPy functions tend to have  
a heap of optional arguments with predefined default options.

Selecting NumPy array elements
From time to time, we will wish to select a specific constituent of an array. We will 
take a look at how to do this, but to kick off, let's make a 2 x 2 matrix again (see the 
elementselection.py file in this book's code bundle):

In: a = array([[1,2],[3,4]])
In: a
Out:
array([[1, 2],
       [3, 4]])

The matrix was made this time by giving the array() function a list of lists. We will 
now choose each item of the matrix one at a time, as shown in the following code 
snippet. Recall that the index numbers begin from 0:

In: a[0,0]
Out: 1
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In: a[0,1]
Out: 2
In: a[1,0]
Out: 3
In: a[1,1]
Out: 4

As you can see, choosing elements of an array is fairly simple. For the array a, we 
just employ the notation a[m,n], where m and n are the indices of the item in the 
array. Have a look at the following figure for your reference:

NumPy numerical types
Python has an integer type, a float type, and complex type; nonetheless, this is not 
sufficient for scientific calculations. In practice, we still demand more data types with 
varying precisions and, consequently, different storage sizes of the type. For this 
reason, NumPy has many more data types. The bulk of the NumPy mathematical 
types ends with a number. This number designates the count of bits related to the type. 
The following table (adapted from the NumPy user guide) presents an overview of 
NumPy numerical types:

Type Description
bool Boolean (True or False) stored as a bit
inti Platform integer (normally either int32 or int64)
int8 Byte (-128 to 127)
int16 Integer (-32768 to 32767)
int32 Integer (-2 ** 31 to 2 ** 31 -1)
int64 Integer (-2 ** 63 to 2 ** 63 -1)
uint8 Unsigned integer (0 to 255)
uint16 Unsigned integer (0 to 65535)
uint32 Unsigned integer (0 to 2 ** 32 - 1)
uint64 Unsigned integer (0 to 2 ** 64 - 1)
float16 Half precision float: sign bit, 5 bits exponent, and 10 bits mantissa
float32 Single precision float: sign bit, 8 bits exponent, and 23 bits mantissa
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Type Description
float64 or 
float

Double precision float: sign bit, 11 bits exponent, and 52 bits mantissa

complex64 Complex number, represented by two 32-bit floats (real and imaginary 
components)

complex128 or 
complex

Complex number, represented by two 64-bit floats (real and imaginary 
components)

For each data type, there exists a matching conversion function (look at the 
numericaltypes.py script of this book's code bundle):

In: float64(42)
Out: 42.0
In: int8(42.0)
Out: 42
In: bool(42)
Out: True
In: bool(0)
Out: False
In: bool(42.0)
Out: True
In: float(True)
Out: 1.0
In: float(False)
Out: 0.0

Many functions have a data type argument, which is frequently optional:

In: arange(7, dtype=uint16)
Out: array([0, 1, 2, 3, 4, 5, 6], dtype=uint16)

It is important to be aware that you are not allowed to change a complex number 
into an integer. Attempting to do that sparks off a TypeError:

In: float(42.0 + 1.j)
Traceback (most recent call last):
  File "numericaltypes.py", line 45, in <module>
    print float(42.0 + 1.j)
TypeError: can't convert complex to float

The same goes for conversion of a complex number into a floating-point number.  
By the way, the j component is the imaginary coefficient of a complex number.  
Even so, you can convert a floating-point number to a complex number, for example, 
complex(1.0). The real and imaginary pieces of a complex number can be pulled 
out with the real() and imag() functions, respectively.
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Data type objects
Data type objects are instances of the numpy.dtype class. Once again, arrays have  
a data type. To be exact, each element in a NumPy array has the same data type.  
The data type object can tell you the size of the data in bytes. The size in bytes is 
given by the itemsize property of the dtype class (refer to dtypeattributes.py):

In: a.dtype.itemsize
Out: 8

Character codes
Character codes are included for backward compatibility with Numeric. Numeric is 
the predecessor of NumPy. Its use is not recommended, but the code is supplied here 
because it pops up in various locations. You should use the dtype object instead. The 
following table lists several different data types and character codes related to them:

Type Character code
integer i

Unsigned integer u

Single precision float f

Double precision float d

bool b

complex D

string S

unicode U

Void V

Take a look at the following code to produce an array of single precision floats  
(refer to charcodes.py in this book's code bundle):

In: arange(7, dtype='f')
Out: array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.], dtype=float32)

Likewise, this creates an array of complex numbers:

In: arange(7, dtype='D')
Out: array([ 0.+0.j,  1.+0.j,  2.+0.j,  3.+0.j,  4.+0.j,  5.+0.j,   
6.+0.j])
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The dtype constructors
We have a variety of means to create data types. Take the case of floating-point data 
(have a look at dtypeconstructors.py in this book's code bundle):

• We can use the general Python float, as shown in the following lines of code:
In: dtype(float)
Out: dtype('float64')

• We can specify a single precision float with a character code:
In: dtype('f')
Out: dtype('float32')

• We can use a double precision float with a character code:
In: dtype('d')
Out: dtype('float64')

• We can pass the dtype constructor a two-character code. The first character 
stands for the type; the second character is a number specifying the number 
of bytes in the type (the numbers 2, 4, and 8 correspond to floats of 16, 32, 
and 64 bits, respectively):
In: dtype('f8')
Out: dtype('float64')

A (truncated) list of all the full data type codes can be found by applying 
sctypeDict.keys():

In: sctypeDict.keys()
Out: [0, …
 'i2',
 'int0']

The dtype attributes
The dtype class has a number of useful properties. For instance, we can get 
information about the character code of a data type through the properties of  
dtype (refer to dtypeattributes2.py in this book's code bundle):

In: t = dtype('Float64')
In: t.char
Out: 'd'

The type attribute corresponds to the type of object of the array elements:

In: t.type
Out: <type 'numpy.float64'>
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The str attribute of dtype gives a string representation of a data type. It begins  
with a character representing endianness, if appropriate, then a character code, 
succeeded by a number corresponding to the number of bytes that each array item 
needs. Endianness, here, entails the way bytes are ordered inside a 32- or 64-bit 
word. In the big-endian order, the most significant byte is stored first, indicated by >. 
In the little-endian order, the least significant byte is stored first, indicated by <,  
as exemplified in the following lines of code:

In: t.str
Out: '<f8'

One-dimensional slicing and indexing
Slicing of one-dimensional NumPy arrays works just like the slicing of standard  
Python lists. Let's define an array containing the numbers 0, 1, 2, and so on up to  
and including 8. We can select a part of the array from indexes 3 to 7, which extracts 
the elements of the arrays 3 through 6 (have a look at slicing1d.py in this book's 
code bundle):

In: a = arange(9)
In: a[3:7]
Out: array([3, 4, 5, 6])

We can choose elements from indexes the 0 to 7 with an increment of 2:

In: a[:7:2]
Out: array([0, 2, 4, 6])

Just as in Python, we can use negative indices and reverse the array:

In: a[::-1]
Out: array([8, 7, 6, 5, 4, 3, 2, 1, 0])

Manipulating array shapes
We have already learned about the reshape() function. Another repeating  
chore is the flattening of arrays. Flattening in this setting entails transforming a 
multidimensional array into a one-dimensional array. The code for this example  
is in the shapemanipulation.py file in this book's code bundle.

import numpy as np

# Demonstrates multi dimensional arrays slicing.
#
# Run from the commandline with
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#
#  python shapemanipulation.py
print "In: b = arange(24).reshape(2,3,4)"
b = np.arange(24).reshape(2,3,4)

print "In: b"
print b
#Out: 
#array([[[ 0,  1,  2,  3],
#        [ 4,  5,  6,  7],
#        [ 8,  9, 10, 11]],
#
#       [[12, 13, 14, 15],
#        [16, 17, 18, 19],
#        [20, 21, 22, 23]]])

print "In: b.ravel()"
print b.ravel()
#Out: 
#array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13,  
14, 15, 16,
#       17, 18, 19, 20, 21, 22, 23])

print "In: b.flatten()"
print b.flatten()
#Out: 
#array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13,  
14, 15, 16,
#       17, 18, 19, 20, 21, 22, 23])

print "In: b.shape = (6,4)"
b.shape = (6,4)

print "In: b"
print b
#Out: 
#array([[ 0,  1,  2,  3],
#       [ 4,  5,  6,  7],
#       [ 8,  9, 10, 11],
#       [12, 13, 14, 15],
#       [16, 17, 18, 19],
#       [20, 21, 22, 23]])

print "In: b.transpose()"
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print b.transpose()
#Out: 
#array([[ 0,  4,  8, 12, 16, 20],
#       [ 1,  5,  9, 13, 17, 21],
#       [ 2,  6, 10, 14, 18, 22],
#       [ 3,  7, 11, 15, 19, 23]])

print "In: b.resize((2,12))"
b.resize((2,12))

print "In: b"
print b
#Out: 
#array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11],
#       [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]])

We can manipulate array shapes using the following functions:

• Ravel: We can accomplish this with the ravel() function as follows:
In: b
Out:
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],
       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])
In: b.ravel()
Out:
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12,  
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23])

• Flatten: The appropriately named function, flatten(), does the same  
as ravel(). However, flatten() always allocates new memory, whereas 
ravel might give back a view of the array. This means that we can directly 
manipulate the array as follows:
In: b.flatten()
Out:
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12,  
13, 14, 15, 16,
       17, 18, 19, 20, 21, 22, 23])
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• Setting the shape with a tuple: Besides the reshape() function, we can also 
define the shape straightaway with a tuple, which is exhibited as follows:
In: b.shape = (6,4)
In: b
Out:
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19],
       [20, 21, 22, 23]])

As you can understand, the preceding code alters the array immediately. 
Now, we have a 6 x 4 array.

• Transpose: In linear algebra, it is common to transpose matrices. Transposing 
is a way to transform data. For a two-dimensional table, transposing means 
that rows become columns and columns become rows. We can do this too  
by using the following code:
In: b.transpose()
Out:
array([[ 0,  4,  8, 12, 16, 20],
       [ 1,  5,  9, 13, 17, 21],
       [ 2,  6, 10, 14, 18, 22],
       [ 3,  7, 11, 15, 19, 23]])

• Resize: The resize() method works just like the reshape() method,  
but changes the array it works on:
In: b.resize((2,12))
In: b
Out:
array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11],
       [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]])

Stacking arrays
Arrays can be stacked horizontally, depth wise, or vertically. We can use, for  
this goal, the vstack(), dstack(), hstack(), column_stack(), row_stack(),  
and concatenate() functions. To start with, let's set up some arrays (refer to 
stacking.py in this book's code bundle):

In: a = arange(9).reshape(3,3)
In: a
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Out:
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
In: b = 2 * a
In: b
Out:
array([[ 0,  2,  4],
       [ 6,  8, 10],
       [12, 14, 16]])

As mentioned previously, we can stack arrays using the following techniques:

• Horizontal stacking: Beginning with horizontal stacking, we will shape a 
tuple of ndarrays and hand it to the hstack() function to stack the arrays.  
This is shown as follows:
In: hstack((a, b))
Out:
array([[ 0,  1,  2,  0,  2,  4],
       [ 3,  4,  5,  6,  8, 10],
       [ 6,  7,  8, 12, 14, 16]])

We can attain the same thing with the concatenate() function, which is  
shown as follows:
In: concatenate((a, b), axis=1)
Out:
array([[ 0,  1,  2,  0,  2,  4],
       [ 3,  4,  5,  6,  8, 10],
       [ 6,  7,  8, 12, 14, 16]])

The following diagram depicts horizontal stacking:

• Vertical stacking: With vertical stacking, a tuple is formed again.  
This time it is given to the vstack() function to stack the arrays.  
This can be seen as follows:
In: vstack((a, b))
Out:
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array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 0,  2,  4],
       [ 6,  8, 10],
       [12, 14, 16]])

The concatenate() function gives the same outcome with the axis 
parameter fixed to 0. This is the default value for the axis parameter,  
as portrayed in the following code:
In: concatenate((a, b), axis=0)
Out:
array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 0,  2,  4],
       [ 6,  8, 10],
       [12, 14, 16]])

Refer to the following figure for vertical stacking:

• Depth stacking: To boot, there is the depth-wise stacking employing 
dstack() and a tuple, of course. This entails stacking a list of arrays  
along the third axis (depth). For example, we could stack 2D arrays  
of image data on top of each other as follows:
In: dstack((a, b))
Out:
array([[[ 0,  0],
        [ 1,  2],
        [ 2,  4]],
       [[ 3,  6],
        [ 4,  8],
        [ 5, 10]],
       [[ 6, 12],
        [ 7, 14],
        [ 8, 16]]])
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• Column stacking: The column_stack() function stacks 1D arrays  
column-wise. This is shown as follows:
In: oned = arange(2)
In: oned
Out: array([0, 1])
In: twice_oned = 2 * oned
In: twice_oned
Out: array([0, 2])
In: column_stack((oned, twice_oned))
Out:
array([[0, 0],
       [1, 2]])

2D arrays are stacked the way the hstack() function stacks them,  
as demonstrated in the following lines of code:
In: column_stack((a, b))
Out:
array([[ 0,  1,  2,  0,  2,  4],
       [ 3,  4,  5,  6,  8, 10],
       [ 6,  7,  8, 12, 14, 16]])
In: column_stack((a, b)) == hstack((a, b))
Out:
array([[ True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True]],  
dtype=bool)

Yes, you guessed it right! We compared two arrays with the == operator.

• Row stacking: NumPy, naturally, also has a function that does row-wise 
stacking. It is named row_stack() and for 1D arrays, it just stacks the arrays 
in rows into a 2D array:
In: row_stack((oned, twice_oned))
Out:
array([[0, 1],
       [0, 2]])

The row_stack() function results for 2D arrays are equal to the vstack() 
function results:
In: row_stack((a, b))
Out:
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array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 0,  2,  4],
       [ 6,  8, 10],
       [12, 14, 16]])
In: row_stack((a,b)) == vstack((a, b))
Out:
array([[ True,  True,  True],
       [ True,  True,  True],
       [ True,  True,  True],
       [ True,  True,  True],
       [ True,  True,  True],
       [ True,  True,  True]], dtype=bool)

Splitting NumPy arrays
Arrays can be split vertically, horizontally, or depth wise. The functions involved  
are hsplit(), vsplit(), dsplit(), and split(). We can split arrays either into 
arrays of the same shape or indicate the location after which the split should happen. 
Let's look at each of the functions in detail:

• Horizontal splitting: The following code splits a 3 x 3 array on its horizontal 
axis into three parts of the same size and shape (see splitting.py in this 
book's code bundle):
In: a
Out:
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
In: hsplit(a, 3)
Out:
[array([[0],
       [3],
       [6]]),
 array([[1],
       [4],
       [7]]),
 array([[2],
       [5],
       [8]])]



NumPy Arrays

[ 40 ]

Liken it with a call of the split() function, with an additional argument, 
axis=1:

In: split(a, 3, axis=1)
Out:
[array([[0],
       [3],
       [6]]),
 array([[1],
       [4],
       [7]]),
 array([[2],
       [5],
       [8]])]

• Vertical splitting: vsplit() splits along the vertical axis:
In: vsplit(a, 3)
Out: [array([[0, 1, 2]]), array([[3, 4, 5]]), array([[6, 7,  
8]])]

The split() function, with axis=0, also splits along the vertical axis:

In: split(a, 3, axis=0)
Out: [array([[0, 1, 2]]), array([[3, 4, 5]]), array([[6, 7,  
8]])]

• Depth-wise splitting: The dsplit() function, unsurprisingly, splits  
depth-wise. We will require an array of rank 3 to begin with:
In: c = arange(27).reshape(3, 3, 3)
In: c
Out:
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8]],
       [[ 9, 10, 11],
        [12, 13, 14],
        [15, 16, 17]],
       [[18, 19, 20],
        [21, 22, 23],
        [24, 25, 26]]])
In: dsplit(c, 3)
Out:
[array([[[ 0],



Chapter 2

[ 41 ]

        [ 3],
        [ 6]],
       [[ 9],
        [12],
        [15]],
       [[18],
        [21],
        [24]]]),
 array([[[ 1],
        [ 4],
        [ 7]],
       [[10],
        [13],
        [16]],
       [[19],
        [22],
        [25]]]),
 array([[[ 2],
        [ 5],
        [ 8]],
       [[11],
        [14],
        [17]],
       [[20],
        [23],
        [26]]])]

NumPy array attributes
Let's learn more about the NumPy array attributes with the help of an example.  
For this example, see arrayattributes2.py provided in the book's code bundle:

import numpy as np

# Demonstrates ndarray attributes.
#
# Run from the commandline with 
#
#  python arrayattributes2.py
b = np.arange(24).reshape(2, 12)
print "In: b"
print b
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#Out: 
#array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11],
#       [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]])

print "In: b.ndim"
print b.ndim
#Out: 2

print "In: b.size"
print b.size
#Out: 24

print "In: b.itemsize"
print b.itemsize
#Out: 8

print "In: b.nbytes"
print b.nbytes
#Out: 192

print "In: b.size * b.itemsize"
print b.size * b.itemsize
#Out: 192

print "In: b.resize(6,4)"
print b.resize(6,4)

print "In: b"
print b
#Out: 
#array([[ 0,  1,  2,  3],
#       [ 4,  5,  6,  7],
#       [ 8,  9, 10, 11],
#       [12, 13, 14, 15],
#       [16, 17, 18, 19],
#       [20, 21, 22, 23]])

print "In: b.T"
print b.T
#Out: 
#array([[ 0,  4,  8, 12, 16, 20],
#       [ 1,  5,  9, 13, 17, 21],
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#       [ 2,  6, 10, 14, 18, 22],
#       [ 3,  7, 11, 15, 19, 23]])

print "In: b.ndim"
print b.ndim
#Out: 1

print "In: b.T"
print b.T
#Out: array([0, 1, 2, 3, 4])

print "In: b = array([1.j + 1, 2.j + 3])"
b = np.array([1.j + 1, 2.j + 3])

print "In: b"
print b
#Out: array([ 1.+1.j,  3.+2.j])

print "In: b.real"
print b.real
#Out: array([ 1.,  3.])

print "In: b.imag"
print b.imag
#Out: array([ 1.,  2.])

print "In: b.dtype"
print b.dtype
#Out: dtype('complex128')

print "In: b.dtype.str"
print b.dtype.str
#Out: '<c16'

print "In: b = arange(4).reshape(2,2)"
b = np.arange(4).reshape(2,2)

print "In: b"
print b
#Out: 
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#array([[0, 1],
#       [2, 3]])

print "In: f = b.flat"
f = b.flat

print "In: f"
print f
#Out: <numpy.flatiter object at 0x103013e00>

print "In: for it in f: print it"
for it in f: 
   print it
#0
#1
#2
#3

print "In: b.flat[2]"
print b.flat[2]
#Out: 2

print "In: b.flat[[1,3]]"
print b.flat[[1,3]]
#Out: array([1, 3])

print "In: b"
print b
#Out: 
#array([[7, 7],
#       [7, 7]])

print "In: b.flat[[1,3]] = 1"
b.flat[[1,3]] = 1

print "In: b"
print b
#Out: 
#array([[7, 1],
#       [7, 1]])
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Besides the shape and dtype attributes, ndarray has a number of other properties, 
as shown in the following list:

• ndim gives the number of dimensions, as shown in the following code snippet:
In: b
Out:
array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11],
       [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]])
In: b.ndim
Out: 2

• size holds the count of elements. This is shown as follows:
In: b.size
Out: 24

• itemsize returns the count of bytes for each element in the array,  
as shown in the following code snippet:
In: b.itemsize
Out: 8

• If you require the full count of bytes the array needs, you can have a look  
at nbytes. This is just a product of the itemsize and size properties:
In: b.nbytes
Out: 192
In: b.size * b.itemsize
Out: 192

• The T property has the same result as the transpose() function, which is 
shown as follows:
In: b.resize(6,4)
In: b
Out:
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19],
       [20, 21, 22, 23]])
In: b.T
Out:
array([[ 0,  4,  8, 12, 16, 20],
       [ 1,  5,  9, 13, 17, 21],
       [ 2,  6, 10, 14, 18, 22],
       [ 3,  7, 11, 15, 19, 23]])
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• If the array has a rank of less than 2, we will just get a view of the array:
In: b.ndim
Out: 1
In: b.T
Out: array([0, 1, 2, 3, 4])

• Complex numbers in NumPy are represented by j. For instance, we can 
produce an array with complex numbers as follows:
In: b = array([1.j + 1, 2.j + 3])
In: b
Out: array([ 1.+1.j,  3.+2.j])

• The real property returns to us the real part of the array, or the array itself  
if it only holds real numbers:
In: b.real
Out: array([ 1.,  3.])

• The imag property holds the imaginary part of the array:
In: b.imag
Out: array([ 1.,  2.])

• If the array holds complex numbers, then the data type will automatically  
be complex as well:
In: b.dtype
Out: dtype('complex128')
In: b.dtype.str
Out: '<c16'

• The flat property gives back a numpy.flatiter object. This is the only 
means to get a flatiter object; we do not have access to a flatiter 
constructor. The flat iterator enables us to loop through an array as  
if it were a flat array, as shown in the following code snippet:
In: b = arange(4).reshape(2,2)
In: b
Out:
array([[0, 1],
       [2, 3]])
In: f = b.flat
In: f
Out: <numpy.flatiter object at 0x103013e00>
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In: for item in f: print item
   .....:
0
1
2
3

It is possible to straightaway obtain an element with the flatiter object:
In: b.flat[2]
Out: 2

Also, you can obtain multiple elements as follows:
In: b.flat[[1,3]]
Out: array([1, 3])

The flat property can be set. Setting the value of the flat property leads  
to overwriting the values of the entire array:
In: b.flat = 7
In: b
Out:
array([[7, 7],
       [7, 7]])

We can also obtain selected elements as follows:
In: b.flat[[1,3]] = 1
In: b
Out:
array([[7, 1],
       [7, 1]])

The next diagram illustrates various properties of ndarray:
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Converting arrays
We can convert a NumPy array to a Python list with the tolist() function (refer to 
arrayconversion.py in this book's code bundle). The following is a brief explanation:

• Convert to a list:
In: b
Out: array([ 1.+1.j,  3.+2.j])
In: b.tolist()
Out: [(1+1j), (3+2j)]

• The astype() function transforms the array to an array of the specified  
data type:
In: b
Out: array([ 1.+1.j,  3.+2.j])
In: b.astype(int)
/usr/local/bin/ipython:1: ComplexWarning: Casting complex  
values to real discards the imaginary part
  #!/usr/bin/python
Out: array([1, 3])
In: b.astype('complex')
Out: array([ 1.+1.j,  3.+2.j])

We are dropping off the imaginary part when casting from the 
complex type to int. The astype() function takes the name 
of a data type as a string too.

The preceding code won't display a warning this time because we used the right  
data type.

Creating array views and copies
In the example about ravel(), views were brought up. Views should not be confused 
with the construct of database views. Views in the NumPy universe are not read only 
and you don't have the possibility to protect the underlying information. It is crucial  
to know when we are handling a shared array view and when we have a replica of  
the array data. A slice of an array, for example, will produce a view. This entails that  
if you assign the slice to a variable and then alter the underlying array, the value of  
this variable will change. We will create an array from the famed Lena picture, and  
then create a view and alter it at the final stage. The Lena image array comes from  
a SciPy function.
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1. Create a copy of the Lena array:
acopy = lena.copy()

2. Create a view of the array:
aview = lena.view()

3. Set all the values in the view to 0 with a flat iterator:
aview.flat = 0

The final outcome is that only one of the pictures depicts the model. The other ones 
are censored altogether, as shown in the following screenshot:

Refer to the following code of this tutorial (it is without comments to save space;  
for the full code, have a look at copy_view.py), which shows the behavior of array 
views and copies:

import scipy.misc
import matplotlib.pyplot as plt

lena = scipy.misc.lena()
acopy = lena.copy()
aview = lena.view()
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plt.subplot(221)
plt.imshow(lena)
plt.subplot(222)
plt.imshow(acopy)
plt.subplot(223)
plt.imshow(aview)
aview.flat = 0
plt.subplot(224)
plt.imshow(aview)
plt.show()

As you can see, by altering the view at the end of the program, we modified the 
original Lena array. This resulted in three blue (or black if you are reading the  
print version of this book) pictures. The copied array was unchanged. It is crucial  
to remember that views are not read only.

Fancy indexing
Fancy indexing is indexing that does not involve integers or slices, which is 
conventional indexing. In this tutorial, we will practice fancy indexing to set the 
diagonal values of the Lena photo to 0. This will draw black lines along the 
diagonals, crossing through them.

The following is the code for this tutorial with comments taken away. The full  
code is in fancy.py of this book's code bundle:

import scipy.misc
import matplotlib.pyplot as plt

lena = scipy.misc.lena()
xmax = lena.shape[0]
ymax = lena.shape[1]
lena[range(xmax), range(ymax)] = 0
lena[range(xmax-1,-1,-1), range(ymax)] = 0
plt.imshow(lena)
plt.show()

The following is a brief explanation of the preceding code:

1. Set the values of the first diagonal to 0.
To set the diagonal values to 0, we need to specify two different ranges  
for the x and y values (coordinates in a Cartesian coordinate system):
lena[range(xmax), range(ymax)] = 0
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2. Set the values of the other diagonal to 0.
To set the values of the other diagonal, we need a different set of ranges,  
but the rules remain the same:
lena[range(xmax-1,-1,-1), range(ymax)] = 0

At the final stage, we produce the following picture with the diagonals 
crossed out:

We specified different ranges for the x values and y values. These ranges were used 
to index the Lena array. Fancy indexing is done based on an internal NumPy iterator 
object. The following three steps are performed:

1. The iterator object is created.
2. The iterator object gets bound to the array.
3. Array elements are accessed via the iterator.
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Indexing with a list of locations
Let's apply the ix_() function to shuffle the Lena photo. The following is the code 
for this example without comments. The finished code for the recipe can be found  
in ix.py in this book's code bundle:

import scipy.misc
import matplotlib.pyplot as plt
import numpy as np

lena = scipy.misc.lena()
xmax = lena.shape[0]
ymax = lena.shape[1]

def shuffle_indices(size):
   arr = np.arange(size)
   np.random.shuffle(arr)

   return arr

xindices = shuffle_indices(xmax)
np.testing.assert_equal(len(xindices), xmax)
yindices = shuffle_indices(ymax)
np.testing.assert_equal(len(yindices), ymax)
plt.imshow(lena[np.ix_(xindices, yindices)])
plt.show()

This function produces a mesh from multiple sequences. We hand in parameters as 
one-dimensional sequences and the function gives back a tuple of NumPy arrays,  
for instance, as follows:

In : ix_([0,1], [2,3])
Out:
(array([[0],[1]]), array([[2, 3]]))

To index the NumPy array with a list of locations, execute the following steps:

1. Shuffle array indices.
Make an array with random index numbers with the shuffle() function  
of the numpy.random subpackage. The function modifies the array in place.

def shuffle_indices(size):
   arr = np.arange(size)
   np.random.shuffle(arr)

   return arr
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2. Plot the shuffled indices, as shown in the following code:
plt.imshow(lena[np.ix_(xindices, yindices)])

3. What we obtain is a totally scrambled Lena:

Indexing NumPy arrays with Booleans
Boolean indexing is indexing based on a Boolean array and falls in the family  
of fancy indexing. Since Boolean indexing is a kind of fancy indexing, the way  
it works is essentially the same.

The following is the code for this segment (refer to boolean_indexing.py in this 
book's code bundle):

import scipy.misc
import matplotlib.pyplot as plt
import numpy as np

lena = scipy.misc.lena()

def get_indices(size):
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   arr = np.arange(size)
   return arr % 4 == 0

lena1 = lena.copy() 
xindices = get_indices(lena.shape[0])
yindices = get_indices(lena.shape[1])
lena1[xindices, yindices] = 0
plt.subplot(211)
plt.imshow(lena1)
lena2 = lena.copy() 
lena2[(lena > lena.max()/4) & (lena < 3 * lena.max()/4)] = 0
plt.subplot(212)
plt.imshow(lena2)
plt.show()

The preceding code implies that indexing occurs with the aid of a special iterator 
object. The following steps will give you a brief explanation of the preceding code:

1. Image with dots on the diagonal.
This is in some manner similar to the Fancy indexing section. This time  
we choose modulo 4 points on the diagonal of the picture:
def get_indices(size):
   arr = np.arange(size)
   return arr % 4 == 0

Then, we just use this selection and plot the points:
lena1 = lena.copy() 
xindices = get_indices(lena.shape[0])
yindices = get_indices(lena.shape[1])
lena1[xindices, yindices] = 0
plt.subplot(211)
plt.imshow(lena1)

2. Set to 0 based on value.
Select array values between one quarter and three quarters of the maximum 
value and set them to 0:
lena2[(lena > lena.max()/4) & (lena < 3 * lena.max()/4)] =  
0
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3. The diagram with the two new pictures is presented as follows:

Broadcasting NumPy arrays
NumPy attempts to execute a procedure even though the operands do not  
have the same shape.

In this recipe, we will multiply an array and a scalar. The scalar is broadened  
to the shape of the array operand and then the multiplication is executed.  
The process described here is called broadcasting. The following is the entire  
code for this recipe (refer to broadcasting.py in this book's code bundle):

import scipy.io.wavfile
import matplotlib.pyplot as plt
import urllib2
import numpy as np
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response =  
urllib2.urlopen('http://www.thesoundarchive.com/austinpowers/smash 
ingbaby.wav')
print response.info()
WAV_FILE = 'smashingbaby.wav'
filehandle = open(WAV_FILE, 'w')
filehandle.write(response.read())
filehandle.close()
sample_rate, data = scipy.io.wavfile.read(WAV_FILE)
print "Data type", data.dtype, "Shape", data.shape
plt.subplot(2, 1, 1)
plt.title("Original")
plt.plot(data)
newdata = data * 0.2
newdata = newdata.astype(np.uint8)
print "Data type", newdata.dtype, "Shape", newdata.shape
scipy.io.wavfile.write("quiet.wav",
    sample_rate, newdata)
plt.subplot(2, 1, 2)
plt.title("Quiet")
plt.plot(newdata)
plt.show()

We will download a sound file and create a new version that is quieter:

1. Reading a WAV file.
We will use standard Python code to download a sound file of Austin 
Powers exclaiming Smashing, baby. SciPy has a wavfile subpackage, which 
lets you load audio data or generate WAV files. If SciPy is installed, then we 
should already have this subpackage. The read() function delivers a data 
array and sample rate. In this exercise, we are only concerned about the data.

sample_rate, data = scipy.io.wavfile.read(WAV_FILE)

2. Plot the original WAV data.
Plot the original WAV data with matplotlib and give the subplot the  
title Original:
plt.subplot(2, 1, 1)
plt.title("Original")
plt.plot(data)
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3. Create a new array.
Now, we will use NumPy to produce a hushed sound sample. It is just a 
matter of making a new array with smaller values by multiplying it with  
a constant. This is where the trick of broadcasting happens. At the end,  
we want to be certain that we have the same data type as in the original  
array because of the WAV format.

newdata = data * 0.2
newdata = newdata.astype(np.uint8)

4. Write to a WAV file.
This new array can be saved in a new WAV file as follows:

scipy.io.wavfile.write("quiet.wav",
    sample_rate, newdata)

5. Plot the new WAV data.
Plot the new data array with matplotlib as follows:

plt.subplot(2, 1, 2)
plt.title("Quiet")
plt.plot(newdata)
plt.show()

6. The result is a diagram of the original WAV file data and a new array with 
smaller values, as depicted in the following figure:
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Summary
In this chapter, we found out a heap about the NumPy basics: data types and arrays. 
Arrays have various properties that describe them. You learned that one of these 
properties is the data type, which, in NumPy, is represented by a full-fledged object.

NumPy arrays can be sliced and indexed in an effective way, compared to standard 
Python lists. NumPy arrays have the extra ability to work with multiple dimensions.

The shape of an array can be modified in multiple ways, such as stacking, resizing, 
reshaping, and splitting. A large number of convenience functions for shape 
manipulation were presented in this chapter.

Having picked up the fundamentals, it's time to proceed to data analysis with the 
commonly used functions in Chapter 3, Statistics and Linear Algebra. This includes  
the usage of staple statistical and numerical functions.



Statistics and Linear Algebra
Statistics and linear algebra are branches of mathematics that are especially useful for 
data analysis. That's why we will focus on them in this chapter. Statistics is needed 
to make inferences from raw data. For instance, we can compute that the data for a 
variable has a certain arithmetic mean and standard deviation. From these numbers, 
we can then infer a range and the expected value for this variable. Then, we can run 
statistical tests to check how likely it is that we made the right conclusion.

Linear algebra concerns itself with systems of linear equations. These are easy to 
solve with NumPy and SciPy using the linalg package. Linear algebra is useful,  
for instance, to fit data to a model. We shall introduce other NumPy and SciPy 
packages in this chapter for random number generation and masked arrays.

In this chapter, we will cover the following topics:

• Descriptive statistics
• The linalg package
• Polynomials
• Matrices as specialized ndarray subclasses
• Random numbers
• Continuous and discrete distributions
• Masked arrays

NumPy and SciPy modules
First, let's take a look at the NumPy and SciPy module documentation. What will  
be described here is not a topic specific to data analysis, but more of a general  
Python item.
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The following code prints the descriptions of subpackages for NumPy and SciPy:

import pkgutil as pu
import numpy as np
import matplotlib as mpl
import scipy as sp
import pydoc

print "NumPy version", np.__version__
print "SciPy version", sp.__version__
print "Matplotlib version", mpl.__version__

def clean(astr):
   s = astr
   # remove multiple spaces
   s = ' '.join(s.split())
   s = s.replace('=','')

   return s

def print_desc(prefix, pkg_path):
   for pkg in pu.iter_modules(path=pkg_path):
      name = prefix + "." + pkg[1]

      if pkg[2] == True:
         try:
            docstr = pydoc.plain(pydoc.render_doc(name))
            docstr = clean(docstr)
            start = docstr.find("DESCRIPTION")
            docstr = docstr[start: start + 140]
            print name, docstr
         except:
            continue

print_desc("numpy", np.__path__)
print
print
print
print_desc("scipy", sp.__path__)

Using the standard Python modules pkgutil and pydoc, we can iterate through 
subpackages in NumPy and SciPy and extract short descriptions of these subpackages. 
We will also print the SciPy, matplotlib, and NumPy versions.
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The versions for the various software used in this chapter can be obtained from the 
__version__ attribute of the corresponding module as follows:

print "NumPy version", np.__version__
print "SciPy version", sp.__version__
print "Matplotlib version", mpl.__version__

I have tested the code with the following versions (of course, you don't need to have 
the exact same versions):

• NumPy Version 1.9.0.dev-e886943
• SciPy Version 0.13.2
• matplotlib Version 1.4.x

We can iterate through subpackages given a path with the iter_modules() function 
of pkgutil. The result of the function call is a list of tuples containing three elements 
each. For us, only the second and third elements are interesting right now. The second 
element contains the name of the subpackage and the third element is a Boolean 
indicating a subpackage.

for pkg in pu.iter_modules(path=pkg_path):

The pydoc.render_doc() function returns the documentation string for a given 
subpackage or function. It returns a string that can contains non-printable characters, 
so we use the pydoc.plain() function to get rid of them. From this string, we will 
extract a part of the text, following the DESCRIPTION heading (not the whole text  
to save space).

docstr = pydoc.plain(pydoc.render_doc(name))

The preceding code should make it easy to find information for locally installed 
Python modules. For NumPy, we get the following subpackage descriptions:

numpy.compat DESCRIPTION This module contains duplicated code from  
Python itself or 3rd party extensions, which may be included for the  
following reasons

numpy.core DESCRIPTION Functions - array - NumPy Array construction -  
zeros - Return an array of all zeros - empty - Return an unitialized  
array - shap

numpy.distutils 

numpy.doc DESCRIPTION Topical documentation  The following topics are  
available: - basics - broadcasting - byteswapping - constants - creation 
- gloss

numpy.f2py 

numpy.fft DESCRIPTION Discrete Fourier Transform (:mod:`numpy.fft`)   
.. currentmodule:: numpy.fft Standard FFTs ------------- ..  
autosummary:: :toctre
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numpy.lib DESCRIPTION Basic functions used by several sub-packages  
and useful to have in the main name-space. Type Handling ------------ 
-   iscomplexo

numpy.linalg DESCRIPTION Core Linear Algebra Tools ------------------ 
------- Linear algebra basics: - norm Vector or matrix norm - inv  
Inverse of a squar

numpy.ma DESCRIPTION  Masked Arrays  Arrays sometimes contain invalid  
or missing data. When doing operations on such arrays, we wish to  
suppress inva

numpy.matrixlib 

numpy.polynomial DESCRIPTION Within the documentation for this sub- 
package, a "finite power series," i.e., a polynomial (also referred  
to simply as a "series

numpy.random DESCRIPTION  Random Number Generation    Utility  
functions  random_sample Uniformly distributed floats over ``[0,  
1)``. random Alias for `ra

numpy.testing DESCRIPTION This single module should provide all the  
common functionality for numpy tests in a single location, so that  
test scripts can ju

For SciPy, we get the following subpackage descriptions:

scipy._build_utils 

scipy.cluster DESCRIPTION  Clustering package (:mod:`scipy.cluster`)   
.. currentmodule:: scipy.cluster :mod:`scipy.cluster.vq` Clustering  
algorithms are u

scipy.constants DESCRIPTION  Constants (:mod:`scipy.constants`)  ..  
currentmodule:: scipy.constants Physical and mathematical constants  
and units. Mathemati

scipy.fftpack DESCRIPTION  Discrete Fourier transforms  
(:mod:`scipy.fftpack`)  Fast Fourier Transforms (FFTs)  ..  
autosummary:: :toctree: generated/ fft -

scipy.integrate DESCRIPTION  Integration and ODEs  
(:mod:`scipy.integrate`)  .. currentmodule:: scipy.integrate  
Integrating functions, given function object 

scipy.interpolate DESCRIPTION  Interpolation  
(:mod:`scipy.interpolate`)  .. currentmodule:: scipy.interpolate Sub- 
package for objects used in interpolation. A

scipy.io DESCRIPTION  Input and output (:mod:`scipy.io`)  ..  
currentmodule:: scipy.io SciPy has many modules, classes, and  
functions available to rea

scipy.lib DESCRIPTION Python wrappers to external libraries  - lapack  
-- wrappers for `LAPACK/ATLAS <http://netlib.org/lapack/>`_ libraries  
- blas -- 
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scipy.linalg DESCRIPTION  Linear algebra (:mod:`scipy.linalg`)  ..  
currentmodule:: scipy.linalg Linear algebra functions. .. seealso::  
`numpy.linalg` for

scipy.misc DESCRIPTION  Miscellaneous routines (:mod:`scipy.misc`)   
.. currentmodule:: scipy.misc Various utilities that don't have  
another home. Note 

scipy.ndimage DESCRIPTION  Multi-dimensional image processing  
(:mod:`scipy.ndimage`)  .. currentmodule:: scipy.ndimage This package  
contains various funct

scipy.odr DESCRIPTION  Orthogonal distance regression  
(:mod:`scipy.odr`)  .. currentmodule:: scipy.odr Package Content  ..  
autosummary:: :toctree: gen

scipy.optimize DESCRIPTION  Optimization and root finding  
(:mod:`scipy.optimize`)  .. currentmodule:: scipy.optimize  
Optimization  General-purpose --------

scipy.signal DESCRIPTION  Signal processing (:mod:`scipy.signal`)  ..  
module:: scipy.signal Convolution  .. autosummary:: :toctree:  
generated/ convolve -

scipy.sparse DESCRIPTION  Sparse matrices (:mod:`scipy.sparse`)  ..  
currentmodule:: scipy.sparse SciPy 2-D sparse matrix package for  
numeric data. Conten

scipy.spatial DESCRIPTION  Spatial algorithms and data structures  
(:mod:`scipy.spatial`)  .. currentmodule:: scipy.spatial Nearest- 
neighbor Queries  .. au

scipy.special DESCRIPTION  Special functions (:mod:`scipy.special`)   
.. module:: scipy.special Nearly all of the functions below are  
universal functions a

scipy.stats DESCRIPTION  Statistical functions (:mod:`scipy.stats`)   
.. module:: scipy.stats This module contains a large number of  
probability distribu

scipy.weave DESCRIPTION C/C++ integration  inline -- a function for  
including C/C++ code within Python blitz -- a function for compiling  
Numeric express

Basic descriptive statistics with NumPy
In this book, we will try to use as many varied datasets as possible. This depends  
on the availability of the data. Unfortunately, this means that the subject of the  
data might not exactly match your interests. Every dataset has its own quirks,  
but the general skills you acquire in this book should transfer to your own field.  
In this chapter, we will load a number of Comma-separated Value (CSV) files  
into NumPy arrays in order to analyze the data. 
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To load the data, we will use the NumPy loadtxt() function as follows:

The code for this example can be found in basic_stats.py 
in the code bundle.

import numpy as np
from scipy.stats import scoreatpercentile

data = np.loadtxt("mdrtb_2012.csv", delimiter=',', usecols=(1,),  
skiprows=1, unpack=True)

print "Max method", data.max()
print "Max function", np.max(data)

print "Min method", data.min()
print "Min function", np.min(data)

print "Mean method", data.mean()
print "Mean function", np.mean(data)

print "Std method", data.std()
print "Std function", np.std(data)

print "Median", np.median(data)
print "Score at percentile 50", scoreatpercentile(data, 50)

Next, we will compute the mean, median, maximum, minimum, and standard 
deviations of a NumPy array.

If these terms sound unfamiliar to you, please take some  
time to learn about them from Wikipedia or any other source. 
As mentioned in the Preface, we will assume familiarity with 
basic mathematical and statistical concepts.

The data comes from the mdrtb_2012.csv file, which can be found in the code 
bundle. This is an edited version of the CSV file, which can be downloaded from  
the WHO website at https://extranet.who.int/tme/generateCSV.asp?ds=mdr_
estimates. It contains data about a type of tuberculosis. The file we are going to use 
is a reduced version of the original file containing only two columns: the country  
and percentage of new cases. Here are the first two lines of the file:

country,e_new_mdr_pcnt
Afghanistan,3.5

https://extranet.who.int/tme/generateCSV.asp?ds=mdr_estimates
https://extranet.who.int/tme/generateCSV.asp?ds=mdr_estimates


Chapter 3

[ 65 ]

Now, let's compute the mean, median, maximum, minimum, and standard 
deviations of a NumPy array:

1. First, we will load the data with the following function call:
data = np.loadtxt("mdrtb_2012.csv", delimiter=',',  
usecols=(1,), skiprows=1, unpack=True)

In the preceding call, we specify a comma as a delimiter, the second  
column to load data from, and that we want to skip the header. We  
also specify the name of the file and assume that the file is in the  
current directory; otherwise, we will have to specify the correct path.

2. The maximum of an array can be obtained via a method of the ndarray and 
NumPy functions. The same goes for the minimum, mean, and standard 
deviations. The following code snippet prints the various statistics:
print "Max method", data.max()
print "Max function", np.max(data)

print "Min method", data.min()
print "Min function", np.min(data)

print "Mean method", data.mean()
print "Mean function", np.mean(data)

print "Std method", data.std()
print "Std function", np.std(data)

The output is as follows:
Max method 50.0
Max function 50.0
Min method 0.0
Min function 0.0
Mean method 3.2787037037
Mean function 3.2787037037
Std method 5.76332073654
Std function 5.76332073654

3. The median can be retrieved with a NumPy or SciPy function, which can 
estimate the 50th percentile of the data with the following lines:
print "Median", np.median(data)
print "Score at percentile 50", scoreatpercentile(data, 50)

The following is printed:
Median 1.8
Score at percentile 50 1.8
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Linear algebra with NumPy
Linear algebra is an important subdivision of mathematics. We can use linear algebra, 
for instance, to perform linear regression. The numpy.linalg subpackage holds linear 
algebra routines. With this subpackage, you can invert matrices, compute eigenvalues, 
solve linear equations, and find determinants among other matters. Matrices in 
NumPy are represented by a subclass of ndarray.

Inverting matrices with NumPy
The inverse of a square and invertible matrix A in linear algebra is the matrix A-1, 
which when multiplied with the original matrix is equal to the identity matrix I.  
This can be written down as the following mathematical equation:

A A-1 = I

The inv() function in the numpy.linalg subpackage can do this for us. Let's invert 
an example matrix. To invert matrices, follow the ensuing steps:

1. Create the example matrix.
We will create the demonstration matrix with the mat() function:
A = np.mat("2 4 6;4 2 6;10 -4 18")
print "A\n", A

The A matrix is printed as follows:

A
[[ 2  4  6]
 [ 4  2  6]
 [10 -4 18]]]

2. Invert the matrix.
Now, we can view the inv() subroutine in action:
inverse = np.linalg.inv(A)
print "inverse of A\n", inverse

The inverse matrix is displayed as follows:

inverse of A
[[-0.41666667  0.66666667 -0.08333333]
 [ 0.08333333  0.16666667 -0.08333333]
 [ 0.25       -0.33333333  0.08333333]]
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If the matrix is singular, or not square, a LinAlgError is raised. If 
you wish, you can check the solution manually. This is left as a drill for 
you. The pinv() NumPy function performs a pseudo inversion, which 
can be applied to any matrix, including matrices that are not square.

3. Check by multiplication.
Let's check what we get when we multiply the original matrix with the  
result of the inv() function:
print "Check\n", A * inverse

The result is the identity matrix, as expected (ignoring small differences):
Check
[[  1.00000000e+00   0.00000000e+00  -5.55111512e-17]
 [ -2.22044605e-16   1.00000000e+00  -5.55111512e-17]
 [ -8.88178420e-16   8.88178420e-16   1.00000000e+00]]

By subtracting the 3 x 3 identity matrix from the previous result, we get the errors  
of the inversion process:

print "Error\n", A * inverse - np.eye(3)

The errors should be negligible in general, but in some cases small errors could be 
propagated with undesirable side effects:

[[ -1.11022302e-16   0.00000000e+00  -5.55111512e-17]

 [ -2.22044605e-16   4.44089210e-16  -5.55111512e-17]

 [ -8.88178420e-16   8.88178420e-16  -1.11022302e-16]]

In such cases, higher precision data types might help or switch to a superior 
algorithm. We computed the inverse of a matrix with the inv() routine of the  
numpy.linalg subpackage. We made certain, with matrix multiplication, whether 
this is indeed the inverse matrix (see inversion.py in this book's code bundle):

import numpy as np

A = np.mat("2 4 6;4 2 6;10 -4 18")
print "A\n", A

inverse = np.linalg.inv(A)
print "inverse of A\n", inverse

print "Check\n", A * inverse
print "Error\n", A * inverse - np.eye(3)
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Solving linear systems with NumPy
A matrix transforms a vector into another vector in a linear fashion. This operation 
numerically corresponds to a system of linear equations. The solve() subroutine 
of numpy.linalg solves systems of linear equations of the form Ax = b; here, A is a 
matrix, b can be a one-dimensional or two-dimensional array, and x is an unknown 
quantity. We will witness the dot() subroutine in action. This function computes  
the dot product of two floating-point numbers' arrays.

Let's solve an instance of a linear system. To solve a linear system, follow the  
ensuing steps:

1. Create the matrix A and array b.
The following code will create A and b:
A = np.mat("1 -2 1;0 2 -8;-4 5 9")
print "A\n", A
b = np.array([0, 8, -9])
print "b\n", b

The matrix A and array (vector) b are defined as follows:

2. Call the solve() function.
Solve this linear system with the solve() function:
x = np.linalg.solve(A, b)
print "Solution", x

The solution of the linear system is as follows:

Solution [ 29.  16.   3.]

3. Check with the dot() function.

Check whether the solution is correct with the dot() function:
print "Check\n", np.dot(A , x)
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The result is as expected:
Check
[[ 0.  8. -9.]]

We solved a linear system by applying the solve() function from the linalg 
subpackage of NumPy and checking the result with the dot() function  
(please refer to solution.py in this book's code bundle):

import numpy as np

A = np.mat("1 -2 1;0 2 -8;-4 5 9")
print "A\n", A

b = np.array([0, 8, -9])
print "b\n", b

x = np.linalg.solve(A, b)
print "Solution", x

print "Check\n", np.dot(A , x)

Finding eigenvalues and eigenvectors 
with NumPy
Eigenvalues are scalar solutions to the equation Ax = ax, where A is a  
two-dimensional matrix and x is a one-dimensional vector. Eigenvectors are  
vectors corresponding to eigenvalues.

Eigenvalues and eigenvectors are fundamental in mathematics 
and are used in many important algorithms, such as Principal 
Component Analysis (PCA). PCA can be used to simplify the 
analysis of large datasets.

The eigvals() subroutine in the numpy.linalg package computes eigenvalues.  
The eig() function gives back a tuple holding eigenvalues and eigenvectors.

We will obtain the eigenvalues and eigenvectors of a matrix with the eigvals()  
and eig() functions of the numpy.linalg subpackage. We will check the outcome 
by applying the dot() function (see eigenvalues.py in this book's code):

import numpy as np

A = np.mat("3 -2;1 0")
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print "A\n", A

print "Eigenvalues", np.linalg.eigvals(A)

eigenvalues, eigenvectors = np.linalg.eig(A)
print "First tuple of eig", eigenvalues
print "Second tuple of eig\n", eigenvectors

for i in range(len(eigenvalues)):
   print "Left", np.dot(A, eigenvectors[:,i])
   print "Right", eigenvalues[i] * eigenvectors[:,i]
   print

Let's calculate the eigenvalues of a matrix:

1. Create the matrix.
The following code will create a matrix:
A = np.mat("3 -2;1 0")
print "A\n", A

The matrix we created looks like this:

A
[[ 3 -2]
 [ 1  0]]

2. Calculate eigenvalues with the eig() function.
Apply the eig() subroutine:
print "Eigenvalues", np.linalg.eigvals(A)

The eigenvalues of the matrix are as follows:

Eigenvalues [ 2.  1.]

3. Get eigenvalues and eigenvectors with eig().
Get the eigenvalues and eigenvectors with the eig() function. This routine 
returns a tuple, where the first element holds eigenvalues and the second 
element contains matching eigenvectors, set up column-wise:
eigenvalues, eigenvectors = np.linalg.eig(A)
print "First tuple of eig", eigenvalues
print "Second tuple of eig\n", eigenvectors

The eigenvalues and eigenvectors values will be:

First tuple of eig [ 2.  1.]
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Second tuple of eig
[[ 0.89442719  0.70710678]
 [ 0.4472136   0.70710678]]

4. Check the result.
Check the answer with the dot() function by computing both sides of the 
eigenvalues equation Ax = ax:
for i in range(len(eigenvalues)):
   print "Left", np.dot(A, eigenvectors[:,i])
   print "Right", eigenvalues[i] * eigenvectors[:,i]
   print

The output is as follows:
Left [[ 1.78885438]
 [ 0.89442719]]
Right [[ 1.78885438]
 [ 0.89442719]]
Left [[ 0.70710678]
 [ 0.70710678]]
Right [[ 0.70710678]
 [ 0.70710678]]

NumPy random numbers
Random numbers are used in Monte Carlo methods, stochastic calculus, and  
more. Real random numbers are difficult to produce, so in practice, we use  
pseudo-random numbers. Pseudo-random numbers are sufficiently random  
for most intents and purposes, except for some very exceptional instances,  
such as very accurate simulations. The random-numbers-associated routines  
can be located in the NumPy random subpackage.

The core random-number generator is based on the Mersenne 
Twister algorithm (refer to https://en.wikipedia.org/
wiki/Mersenne_twister).

Random numbers can be produced from discrete or continuous distributions.  
The distribution functions have an optional size argument, which informs  
NumPy how many numbers are to be created. You can specify either an integer  
or a tuple as the size. This will lead to an array of appropriate shapes filled with 
random numbers. Discrete distributions include the geometric, hypergeometric,  
and binomial distributions. Continuous distributions include the normal and 
lognormal distributions.

https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Mersenne_twister


Statistics and Linear Algebra

[ 72 ]

Gambling with the binomial distribution
The binomial distribution models the number of successes in an integer number of 
independent runs of an experiment, where the chance of success in each experiment 
is a set number.

Envisage a 17th-century gambling house where you can wager on tossing pieces of 
eight. Nine coins are flipped in a popular game. If less than five coins are heads, then 
you lose one piece of eight; otherwise, you earn one. Let's simulate this, commencing 
with one thousand coins in our possession. We will use the binomial() function 
from the random module for this purpose:

If you want to follow the code, have a look at headortail.py in this 
book's code bundle.

import numpy as np
from matplotlib.pyplot import plot, show

cash = np.zeros(10000)
cash[0] = 1000
outcome = np.random.binomial(9, 0.5, size=len(cash))

for i in range(1, len(cash)):

   if outcome[i] < 5:
      cash[i] = cash[i - 1] - 1
   elif outcome[i] < 10:
      cash[i] = cash[i - 1] + 1
   else:
      raise AssertionError("Unexpected outcome " + outcome)

print outcome.min(), outcome.max()

plot(np.arange(len(cash)), cash)
show()

In order to understand the binomial() function, take a look at the following steps:

1. Calling the binomial() function.
Initialize an array, which acts as the cash balance, to zero. Call the binomial() 
function with a size of 10000. This represents 10,000 coin flips in our casino:

cash = np.zeros(10000)
cash[0] = 1000
outcome = np.random.binomial(9, 0.5, size=len(cash))
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2. Updating the cash balance.
Go through the results of the coin tosses and update the cash array.  
Display the highest and lowest value of the outcome array, just to  
make certain we don't have any unusual outliers:
for i in range(1, len(cash)):
   if outcome[i] < 5:
      cash[i] = cash[i - 1] - 1
   elif outcome[i] < 10:
      cash[i] = cash[i - 1] + 1
   else:
      raise AssertionError("Unexpected outcome " + outcome)
print outcome.min(), outcome.max()

As expected, the values are between 0 and 9:

0 9

3. Plotting the cash array with matplotlib:
plot(np.arange(len(cash)), cash)
show()

You can determine in the following plot that our cash balance executes a random 
walk (random movement not following a pattern):

Of course, each time we execute the code, we will have a different random walk.  
If you want to always receive the same results, you will want to hand a seed value  
to the binomial() function from the NumPy random subpackage.
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Sampling the normal distribution
Continuous distributions are modeled by the probability density functions (pdf). 
The chance for a specified interval is found by integration of the probability density 
function. The NumPy random module has a number of functions that represent 
continuous distributions, such as beta, chisquare, exponential, f, gamma, gumbel, 
laplace, lognormal, logistic, multivariate_normal, noncentral_chisquare, 
noncentral_f, normal, and others.

We will visualize the normal distribution by applying the normal() function from the 
random NumPy subpackage. We will do this by drawing a bell curve and histogram of 
randomly generated values (refer to normaldist.py in this book's code bundle):

import numpy as np
import matplotlib.pyplot as plt

N=10000

normal_values = np.random.normal(size=N)
dummy, bins, dummy = plt.hist(normal_values, np.sqrt(N), normed=True, 
lw=1)
sigma = 1
mu = 0
plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * np.exp( - (bins - 
mu)**2 / (2 * sigma**2) ),lw=2)
plt.show()

Random numbers can be produced from a normal distribution and their distribution 
might be displayed with a histogram. To plot a normal distribution, follow the 
ensuing steps:

1. Generate values.
Create random numbers for a certain sample size with the aid of the 
normal() function from the random NumPy subpackage:

N=100.00
normal_values = np.random.normal(size=N)

2. Draw the histogram and theoretical pdf.
Plot the histogram and theoretical pdf with a central value of 0 and a 
standard deviation of 1. We will use matplotlib for this goal:
dummy, bins, dummy = plt.hist(normal_values,  
  np.sqrt(N), normed=True, lw=1)
sigma = 1
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mu = 0
plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi))  
  * np.exp( - (bins - mu)**2 / (2 * sigma**2) ),lw=2)
plt.show()

In the following plot, we see the famed bell curve:

Performing a normality test with SciPy
The normal distribution is widely used in science and statistics. According to the 
central limit theorem, a large, random sample with independent observations will 
converge towards the normal distribution. The properties of the normal distribution 
are well known and it is considered convenient to use. However, there are a number 
of requirements that need to be met such as a sufficiently large number of data points, 
and these data points must be independent. It is a good practice to check whether data 
conforms to the normal distribution or not. A great number of normality tests exist, 
some of which have been implemented in the scipy.stats package. We will apply 
these tests in this section. As sample data, we will use flu trends data from https://
www.google.org/flutrends/data.txt. The original file has been reduced to include 
only two columns: a date and values for Argentina. A few lines are given as follows:

Date,Argentina
29/12/02,
05/01/03,

https://www.google.org/flutrends/data.txt
https://www.google.org/flutrends/data.txt
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12/01/03,
19/01/03,
26/01/03,
02/02/03,136

The data can be found in the goog_flutrends.csv file of the code bundle. We will 
also sample data from the normal distribution as we did in the previous tutorial.  
The resulting array will have the same size as the flu trends array and will serve  
as the golden standard, which should pass the normality test with flying colors.

Refer to normality_test.py in the code bundle for the code.

import numpy as np
from scipy.stats import shapiro
from scipy.stats import anderson
from scipy.stats import normaltest

flutrends = np.loadtxt("goog_flutrends.csv", delimiter=',', 
usecols=(1,), skiprows=1, converters = {1: lambda s: float(s or 0)}, 
unpack=True)
N = len(flutrends)
normal_values = np.random.normal(size=N)
zero_values = np.zeros(N)

print "Normal Values Shapiro", shapiro(normal_values)
print "Zeroes Shapiro", shapiro(zero_values)
print "Flu Shapiro", shapiro(flutrends)
print

print "Normal Values Anderson", anderson(normal_values)
print "Zeroes Anderson", anderson(zero_values)
print "Flu Anderson", anderson(flutrends)
print

print "Normal Values normaltest", normaltest(normal_values)
print "Zeroes normaltest", normaltest(zero_values)
print "Flu normaltest", normaltest(flutrends)
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As a negative example, we will use an array of the same size as the two previously 
mentioned arrays filled with zeros. In real life, we could get this kind of values if we 
were dealing with a rare event (for instance, a pandemic outbreak).

In the data file, some cells are empty. Of course, these types of issues occur 
frequently, so we have to get used to cleaning our data. We are going to assume that 
the correct value should be 0. A converter can fill in those 0 values for us as follows:

flutrends = np.loadtxt("goog_flutrends.csv", delimiter=',',  
usecols=(1,), skiprows=1, converters = {1: lambda s:  
float(s or 0)}, unpack=True)

The Shapiro-Wilk test can check for normality. The corresponding SciPy function 
returns a tuple of which the first number is a test statistic and the second number 
is a p-value. It should be noted that the zeros-filled array caused a warning. In fact, 
all the three functions used in this example had trouble with this array and gave 
warnings. We get the following result:

Normal Values Shapiro (0.9967482686042786,  
0.2774980068206787)
Zeroes Shapiro (1.0, 1.0)
Flu Shapiro (0.9351990818977356, 2.2945883254311397e-15)

The result for the zeros-filled array is a bit strange. Since we get a warning, it might 
be advisable to even ignore it altogether. The p-values we get are similar to the 
results of the third test later in this example. The analysis is basically the same.

The Anderson-Darling test can check for normality and also for other distributions 
such as Exponential, Logistic, and Gumbel. The related SciPy function related a test 
statistic and an array containing critical values for the 15, 10, 5, 2.5, and 1 percentage 
significance levels. If the statistic is larger than the critical value at a significance 
level, we can reject normality. We get the following values:

Normal Values Anderson (0.31201465602225653, array([ 0.572,   
0.652,  0.782,  0.912,  1.085]), array([ 15. ,  10. ,   5.  
,   2.5,   1. ]))

Zeroes Anderson (nan, array([ 0.572,  0.652,  0.782,   
0.912,  1.085]), array([ 15. ,  10. ,   5. ,   2.5,   1.  
]))

Flu Anderson (8.258614154768793, array([ 0.572,  0.652,   
0.782,  0.912,  1.085]), array([ 15. ,  10. ,   5. ,   2.5,    
1. ]))
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For the zeros-filled array, we cannot say anything sensible because the statistic 
returned is not a number. We are not allowed to reject normality for our golden 
standard array, as we would have expected. However, the statistic returned for  
the flu trends data is larger than all the corresponding critical values. We can, 
therefore, confidently reject normality. Out of the three test functions, this one  
seems to be the easiest to use.

The D'Agostino and Pearson's test is also implemented in SciPy as the normaltest() 
function. This function returns a tuple with a statistic and p-value just like the 
shapiro() function. The p-value is a two-sided Chi-squared probability. Chi-squared 
is another well-known distribution. The test itself is based on z-scores of the skewness 
and kurtosis tests. Skewness measures how symmetric a distribution is. The normal 
distribution is symmetric and has zero skewness. Kurtosis tells us something about the 
shape of the distribution (high peak, fat tail). The normal distribution has a kurtosis of 
three (the excess kurtosis is zero). The following values are obtained by the test:

Normal Values normaltest (3.102791866779639, 0.21195189649335339)
Zeroes normaltest (1.0095473240349975, 0.60364218712103535)
Flu normaltest (99.643733363569538, 2.3048264115368721e-22)

Since we are dealing with a probability for the p-value, we want this probability  
to be as high as possible and close to one. For the zeros-filled array, this has strange 
consequences, but since we got warnings, the result for that particular array is not 
reliable. Further, we can accept normality if the p-value is at least 0.5. For the golden 
standard array, we get a lower value, which means that we probably need to have 
more observations. It is left as an exercise for you to confirm this.

Creating a NumPy-masked array
Data is often messy and contains gaps or characters that we do not deal with often. 
Masked arrays can be utilized to disregard absent or invalid data points. A masked 
array from the numpy.ma subpackage is a subclass of ndarray with a mask. In this 
section, we will use the Lena Soderberg photo as the data source and act as if some  
of this data is corrupt. The following is the full code for the masked-array example 
from the masked.py file in this book's code bundle:

import numpy
import scipy
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import matplotlib.pyplot as plt

lena = scipy.misc.lena()
random_mask = numpy.random.randint(0, 2, size=lena.shape)

plt.subplot(221)
plt.title("Original")
plt.imshow(lena)
plt.axis('off')

masked_array = numpy.ma.array(lena, mask=random_mask)
print masked_array

plt.subplot(222)
plt.title("Masked")
plt.imshow(masked_array)
plt.axis('off')

plt.subplot(223)
plt.title("Log")
plt.imshow(numpy.log(lena))
plt.axis('off')

plt.subplot(224)
plt.title("Log Masked")
plt.imshow(numpy.log(masked_array))
plt.axis('off')

plt.show()

Finally, we will display the original picture, logarithm values of the original image, 
the masked array, and logarithm values thereof:

1. Create a mask.
To produce a masked array, we have to stipulate a mask. Let's create a 
random mask. This mask will have values that are either 0 or 1:

random_mask = numpy.random.randint(0, 2, size=lena.shape)

2. Create a masked array.
By applying the mask in the former step, create a masked array:
masked_array = numpy.ma.array(lena, mask=random_mask)
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The resulting pictures are exhibited as follows:

We applied a random mask to NumPy arrays. This resulted in disregarding the  
data matching the mask. There is an entire range of masked-array procedures to  
be discovered in the numpy.ma subpackage. In this tutorial, we only presented  
how to produce a masked array.

Disregarding negative and extreme values
Masked arrays are useful when we desire to ignore negative values, for example,  
when taking the logarithm of array values. A second use case for masked arrays is 
rejecting outliers. This works based on a higher and lower limit for extreme values. 
In this tutorial, we will apply these techniques to the salary data of players in the 
MLB. The data comes originally from http://www.exploredata.net/Downloads/
Baseball-Data-Set. The data was edited to contain two columns: the player name 
and salary. This resulted in MLB2008.csv, which can be found in the code bundle.  
The full script for this tutorial is in the masked_funcs.py file in this book's  
code bundle:

import numpy as np
from matplotlib.finance import quotes_historical_yahoo
from datetime import date

http://www.exploredata.net/Downloads/Baseball-Data-Set
http://www.exploredata.net/Downloads/Baseball-Data-Set
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import sys
import matplotlib.pyplot as plt

salary = np.loadtxt("MLB2008.csv", delimiter=',', usecols=(1,), 
skiprows=1, unpack=True)
triples = np.arange(0, len(salary), 3)
print "Triples", triples[:10], "..."

signs = np.ones(len(salary))
print "Signs", signs[:10], "..."

signs[triples] = -1
print "Signs", signs[:10], "..."

ma_log = np.ma.log(salary * signs)
print "Masked logs", ma_log[:10], "..."

dev = salary.std()
avg = salary.mean()
inside = np.ma.masked_outside(salary, avg - dev, avg + dev)
print "Inside", inside[:10], "..."

plt.subplot(311)
plt.title("Original")
plt.plot(salary)

plt.subplot(312)
plt.title("Log Masked")
plt.plot(np.exp(ma_log))

plt.subplot(313)
plt.title("Not Extreme")
plt.plot(inside)

plt.show()

The following are the steps that will help you execute the aforementioned commands:

1. Taking the logarithm of negative numbers.
We will take the logarithm of an array that holds negative numbers.  
Firstly, let's create an array holding numbers divisible by three:
triples = numpy.arange(0, len(salary), 3)
print "Triples", triples[:10], "..."
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Next, we will produce an array with ones that have the same size as the 
salary data array:
signs = numpy.ones(len(salary))
print "Signs", signs[:10], "..."

We will set up each third array element to be negative with the aid of 
indexing tricks we acquired in Chapter 2, NumPy Arrays:
signs[triples] = -1
print "Signs", signs[:10], "..."

In conclusion, we will take the logarithm of this array:
ma_log = numpy.ma.log(salary * signs)
print "Masked logs", ma_log[:10], "..."

This ought to print the following for the salary data:
Triples [ 0  3  6  9 12 15 18 21 24 27] ...
Signs [ 1.  1.  1.  1.  1.  1.  1.  1.  1.  1.] ...
Signs [-1.  1.  1. -1.  1.  1. -1.  1.  1. -1.] ...
Masked logs [-- 14.970818190308929 15.830413578506539 --  
13.458835614025542
 15.319587954740548 -- 15.648092021712584  
13.864300722133706 --] ...

2. Ignoring extreme values.
Let's specify outliers as being one standard deviation below the mean or  
one standard deviation above the mean (this is not necessarily a correct 
definition that is given here because it is easy to compute). This definition 
directs us to compose the following code, which will mask extreme points:
dev = salary.std()
avg = salary.mean()
inside = numpy.ma.masked_outside(salary, avg - dev, avg +  
dev)
print "Inside", inside[:10], "..."

The following code displays the output for the initial 10 elements:
Inside [3750000.0 3175000.0 7500000.0 3000000.0 700000.0  
4500000.0 3000000.0
 6250000.0 1050000.0 4600000.0] ...

Let's plot the original salary data, the data after taking the logarithm and 
the exponent back again, and finally the data after applying the standard 
deviation-based mask.
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It will look something like this:

Functions in the numpy.ma subpackage mask array elements, which we view as 
invalid. For example, negative values are not allowed for the log() and sqrt() 
functions. A masked value is like a NULL value in relational databases and 
programming. All operations with a masked value deliver a masked value.

Summary
In this chapter, you learned a lot about NumPy and SciPy subpackages. We went 
over linear algebra, statistics, continuous and discrete distributions, masked arrays, 
and random numbers.

In the next chapter, Chapter 4, pandas Primer, we will discover pandas, which is a 
Python data analysis and manipulation library.





pandas Primer
pandas is named after panel data (an econometric term) and Python data analysis, 
and is a popular open source Python project. This chapter is a tutorial on basic pandas 
functionalities, where we will learn about pandas data structures and operations.

The official pandas documentation insists on naming the project 
pandas in all lowercase letters. The other convention they insist on 
is this import statement: import pandas as pd. We will try to 
follow these conventions as much as possible.

In this chapter, we will install and explore pandas. Then, we will acquaint ourselves 
with the two central pandas data structures: DataFrame and Series. After this, you 
will learn how to perform SQL-like operations on the data contained in these data 
structures. pandas has statistical utilities including time-series routines, some of 
which will be demonstrated. The topics we will pursue are as follows:

• Installing and exploring pandas
• DataFrame and Series data structures
• Querying data in pandas
• Statistics with pandas DataFrames
• Data aggregation with pandas DataFrames
• Concatenating, joining, and appending DataFrames
• Handling missing values
• Dealing with dates
• Pivot tables
• Remote data access
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Installing and exploring pandas
The minimal dependency set requirements for pandas is given as follows:

• NumPy: This is the fundamental numerical array package that we  
installed and covered extensively in the preceding chapters

• python-dateutil: This is a date-handling library
• pytz: This handles time zone definitions

This list is the bare minimum; a longer list of optional dependencies can be located  
at http://pandas.pydata.org/pandas-docs/stable/install.html. We can 
install pandas via PyPI with pip or easy_install, using a binary installer, with the 
aid of our operating system package manager, or from the source by checking out 
the code. The binary installers can be downloaded from http://pandas.pydata.
org/getpandas.html.

The command to install pandas with pip is as follows:

$ pip install pandas

You may have to prepend the preceding command with sudo if your user account 
doesn't have sufficient rights. For most, if not all, Linux distributions, the pandas 
package name is python-pandas. Please refer to the manual pages of your package 
manager for the correct command to install. These commands should be the same as 
the ones summarized in Chapter 1, Getting Started with Python Libraries. To install from 
the source, we need to execute the following commands from the command line:

$ git clone git://github.com/pydata/pandas.git 

$ cd pandas 

$ python setup.py install

This procedure requires the correct setup of the compiler and other dependencies; 
therefore, it is recommended only if you really need the most up-to-date version  
of pandas. Once we have installed pandas, we can explore it further by adding 
pandas-related lines to our documentation-scanning script pkg_check.py of the 
previous chapter. The program prints the following output:

pandas version 0.13.1

pandas.compat DESCRIPTION compat  Cross-compatible functions for Python 2 
and 3. Key items to import for 2/3 compatible code: * iterators: range(), 
map(),

pandas.computation 

pandas.core 

http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/getpandas.html
http://pandas.pydata.org/getpandas.html
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pandas.io 

pandas.rpy 

pandas.sandbox 

pandas.sparse 

pandas.stats 

pandas.tests 

pandas.tools 

pandas.tseries 

pandas.util 

Unfortunately, the documentation of the pandas subpackages lacks informative 
descriptions; however, the subpackage names are descriptive enough to get an  
idea of what they are about.

pandas DataFrames
A pandas DataFrame is a data structure, which is a labeled two-dimensional object 
and is similar in spirit to an Excel worksheet or a relational database table. A similar 
concept, by the way, was invented originally in the R programming language.  
(For more information, refer to http://www.r-tutor.com/r-introduction/ 
data-frame.) A DataFrame can be created in the following ways:

• From another DataFrame.
• From a NumPy array or a composite of arrays that has a  

two-dimensional shape.
• Likewise, we can create a DataFrame out of another pandas data structure 

called Series. We will learn about Series in the following section.
• A DataFrame can also be produced from a file, such as a CSV file.

As an example, we will use data that can be retrieved from http://www.
exploredata.net/Downloads/WHO-Data-Set. The original datafile is quite big  
and has many columns, so we will use an edited file instead, which only contains  
the first nine columns and is called WHO_first9cols.csv; the file is in the code 
bundle of this book. These are the first two lines including the header:

Country,CountryID,Continent,Adolescent fertility rate (%),Adult  
literacy rate (%),Gross national income per capita (PPP  
international $),Net primary school enrolment ratio female (%),Net  
primary school enrolment ratio male (%),Population (in thousands)  
total

Afghanistan,1,1,151,28,,,,26088

http://www.r-tutor.com/r-introduction/ data-frame
http://www.r-tutor.com/r-introduction/ data-frame
http://www.exploredata.net/Downloads/WHO-Data-Set
http://www.exploredata.net/Downloads/WHO-Data-Set
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In the next steps, we will take a look at pandas DataFrames and its attributes:

1. To kick off, load the datafile into a DataFrame and print it on the screen:
from pandas.io.parsers import read_csv

df = read_csv("WHO_first9cols.csv")
print "Dataframe", df

The printout is a summary of the DataFrame. It is too long to be displayed 
entirely, so we will just grab the last few lines:

57                             1340
58                            81021
59                              833
                                ...

[202 rows x 9 columns]

2. The DataFrame has an attribute that holds its shape as a tuple, similar  
to ndarray. Query the number of rows of a DataFrame as follows:
print "Shape", df.shape
print "Length", len(df)

The values we obtain comply with the printout of the preceding step:

Shape (202, 9)
Length 202

3. Check the column's header and data types with the other attributes:
print "Column Headers", df.columns
print "Data types", df.dtypes

We receive the column headers in a special data structure:
Column Headers Index([u'Country', u'CountryID',  
u'Continent', u'Adolescent fertility rate (%)', u'Adult  
literacy rate (%)', u'Gross national income per capita (PPP  
international $)', u'Net primary school enrolment ratio  
female (%)', u'Net primary school enrolment ratio male  
(%)', u'Population (in thousands) total'], dtype='object')
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The data types are printed as follows:

4. The pandas DataFrame has an index, which is like the primary key of 
relational database tables. We can either specify the index or have pandas 
create it automatically. The index can be accessed with a corresponding 
property as follows:
print "Index", df.index

An index helps us search for items quickly, just like the index in this book. 
The index in this case is a wrapper around an array starting at 0, with an 
increment of one for each row:
Index Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,  
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,  
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,  
43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,  
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,  
73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,  
88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, ...],  
dtype='int64')

5. Sometimes, we wish to iterate over the underlying data of a DataFrame. 
Iterating over column values can be inefficient if we utilize the pandas 
iterators. It's much better to extract the underlying NumPy arrays and  
work with those. The pandas DataFrame has an attribute that can aid  
with this as well:

print "Values", df.values
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Please note that some values are designated nan in the output, for not a 
number. These values come from empty fields in the input datafile:
Values [['Afghanistan' 1 1 ..., nan nan 26088.0]
 ['Albania' 2 2 ..., 93.0 94.0 3172.0]
 ['Algeria' 3 3 ..., 94.0 96.0 33351.0]
 ...,
 ['Yemen' 200 1 ..., 65.0 85.0 21732.0]
 ['Zambia' 201 3 ..., 94.0 90.0 11696.0]
 ['Zimbabwe' 202 3 ..., 88.0 87.0 13228.0]]

The code for the following example can be located in the df_demo.py file of this 
book's code bundle:

from pandas.io.parsers import read_csv

df = read_csv("WHO_first9cols.csv")
print "Dataframe", df
print "Shape", df.shape
print "Length", len(df)
print "Column Headers", df.columns
print "Data types", df.dtypes
print "Index", df.index
print "Values", df.values

pandas Series
The pandas Series data structure is a one-dimensional heterogeneous array with 
labels. We can create a pandas Series data structure as follows:

• From a Python dict
• From a NumPy array
• From a single scalar value

When creating a Series, we can hand the constructor a list of axis labels, which 
is commonly referred to as the index. The index is an optional parameter. By 
default, if we use a NumPy array as the input data, pandas will index values by 
autoincrementing the index commencing from 0. If the data handed to the constructor 
is a Python dict, the sorted dict keys will become the index. In the case of a scalar value 
as the input data, we are required to supply the index. For each new value in the index, 
the scalar input value will be reiterated. The pandas Series and DataFrame interfaces 
have features and behaviors borrowed from NumPy arrays and Python dictionaries, 
such as slicing, lookup using a key, and vectorized operations. Performing a lookup on 
a DataFrame column returns a Series. We will demonstrate this and other features of 
Series by going back to the previous section and loading the CSV file again.
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1. We will start by selecting the Country column, which happens to be the  
first column in the datafile. Then, show the type of the object currently in  
the local scope:
country_col = df["Country"]
print "Type df", type(df)
print "Type country col", type(country_col)

We can now confirm that we get a Series when we select a column of a  
data frame:
Type df <class 'pandas.core.frame.DataFrame'>
Type country col <class 'pandas.core.series.Series'>

If you want, you can open a Python or IPython shell, import 
pandas, and view with the dir() function, a list of functions 
and attributes for the classes of the previous printout. However, 
be aware that you will get a long list of functions in both cases.

2. The pandas Series data structure shares some of the attributes of DataFrame 
and also has a name attribute. Explore these properties as follows:
print "Series shape", country_col.shape
print "Series index", country_col.index
print "Series values", country_col.values
print "Series name", country_col.name

The output (truncated to save space) is given as follows:
Series shape (202,)
Series index Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,  
11, 12, ...], dtype='int64')

Series values ['Afghanistan' … 'Vietnam' 'West Bank and  
Gaza' 'Yemen' 'Zambia' 'Zimbabwe']
Series name Country

3. To demonstrate the slicing of a Series, select the last two countries of the 
Country Series and print the type:
print "Last 2 countries", country_col[-2:]
print "Last 2 countries type", type(country_col[-2:])

Slicing yields another Series as demonstrated:
Last 2 countries 200      Zambia
201    Zimbabwe
Name: Country, dtype: object
Last 2 countries type <class 'pandas.core.series.Series'>
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4. NumPy functions can operate on pandas DataFrame and Series. We can, 
for instance, apply the NumPy sign() function, which yields the sign of a 
number. 1 is returned for positive numbers, -1 for negative numbers, and 
0 for zeros. Apply the function to the DataFrame and last column, which 
happens to be the population for each country in the dataset:
print "df signs", np.sign(df)
last_col = df.columns[-1]
print "Last df column signs", last_col,  
np.sign(df[last_col])

The output is truncated here to save space and is as follows:
df signs    Country CountryID Continent Adolescent  
fertility rate (%)  \
0        1         1         1                              
1
[TRUNCATED]
59                                           1                                
1  
                                           ...                              
...  

[202 rows x 9 columns]
Last df column signs Population (in thousands) total 0      
1
1     1
[TRUNCATED]
198   NaN
199     1
200     1
201     1
Name: Population (in thousands) total, Length: 202, dtype:  
float64

Please note that the population value at index 198 is NaN. 
The matching record is given as follows:

West Bank and Gaza,199,1,,,,,,
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We can perform all sorts of numerical operations between DataFrames, Series,  
and NumPy arrays. If we get the underlying NumPy array of a pandas Series  
and subtract this array from the Series, we can reasonably expect the following  
two outcomes:

• An array filled with zeros and at least one NaN (we saw one NaN in the 
previous step)

• We can also expect to get only zeros

The rule for NumPy functions is to produce NaNs for most operations involving 
NaNs, as illustrated by the following IPython session:

In: np.sum([0, np.nan])

Out: nan

Write the following code to perform the subtraction:

print np.sum(df[last_col] - df[last_col].values)

The snippet yields the result predicted by the second option:

0.0

Please refer to the series_demo.py file in the book's code bundle:

from pandas.io.parsers import read_csv
import numpy as np

df = read_csv("WHO_first9cols.csv")
country_col = df["Country"]
print "Type df", type(df)
print "Type country col", type(country_col)

print "Series shape", country_col.shape
print "Series index", country_col.index
print "Series values", country_col.values
print "Series name", country_col.name

print "Last 2 countries", country_col[-2:]
print "Last 2 countries type", type(country_col[-2:])

print "df signs", np.sign(df)
last_col = df.columns[-1]
print "Last df column signs", last_col, np.sign(df[last_col])

print np.sum(df[last_col] - df[last_col].values)
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Querying data in pandas
Since a pandas DataFrame is structured similarly to a relational database, we can 
view operations that read data from a DataFrame as a query. In this example, we  
will retrieve the annual sunspot data from Quandl. We can either use the Quandl 
API or download the data manually as a CSV file from http://www.quandl.com/
SIDC/SUNSPOTS_A-Sunspot-Numbers-Annual. If you want to install the API, you 
can do so by downloading installers from https://pypi.python.org/pypi/Quandl 
or running the following command:

$ pip install Quandl

Using the API is free, but is limited to 50 API calls per day. If you 
require more API calls, you will have to request an authentication 
key. The code in this tutorial is not using a key. It should be simple 
to change the code to either use a key or read a downloaded CSV file. 
If you have difficulties, refer to the Where to find help and references 
section in Chapter 1, Getting Started with Python Libraries, or search 
through the Python docs at https://docs.python.org/2/.

Without further preamble, let's take a look at how to query data in a pandas 
DataFrame:

1. As a first step, we obviously have to download the data. After importing  
the Quandl API, get the data as follows:
import Quandl

# Data from http://www.quandl.com/SIDC/SUNSPOTS_A-Sunspot- 
Numbers-Annual
# PyPi url https://pypi.python.org/pypi/Quandl
sunspots = Quandl.get("SIDC/SUNSPOTS_A")

2. The head() and tail() methods have a purpose similar to that of the  
Unix commands with the same name. Select the first n and last n records  
of a DataFrame, where n is an integer parameter:
print "Head 2", sunspots.head(2) 
print "Tail 2", sunspots.tail(2)

This gives us the first two and last two rows of the sunspot data:
Head 2             Number
Year              
1700-12-31       5
1701-12-31      11

[2 rows x 1 columns]

http://www.quandl.com/SIDC/SUNSPOTS_A-Sunspot-Numbers-Annual
http://www.quandl.com/SIDC/SUNSPOTS_A-Sunspot-Numbers-Annual
https://pypi.python.org/pypi/Quandl
https://docs.python.org/2/
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Tail 2             Number
Year              
2012-12-31    57.7
2013-12-31    64.9

[2 rows x 1 columns]

Please note that we only have one column holding the number of sunspots 
per year. The dates are a part of the DataFrame index.

3. The following is the query for the last value using the last date:
last_date = sunspots.index[-1]
print "Last value", sunspots.loc[last_date]

You can check the following output with the result from the previous step:
Last value Number    64.9
Name: 2013-12-31 00:00:00, dtype: float64

4. Query the date with date strings in the YYYYMMDD format as follows:
print "Values slice by date", sunspots["20020101":  
"20131231"]

This gives the records from 2002 through 2013:
Values slice by date             Number
Year              
2002-12-31   104.0
[TRUNCATED]
2013-12-31    64.9

[12 rows x 1 columns]

5. A list of indices can be used to query as well:
print "Slice from a list of indices", sunspots.iloc[[2, 4,  
-4, -2]]

The preceding code selects the following rows:
Slice from a list of indices             Number
Year              
1702-12-31    16.0
1704-12-31    36.0
2010-12-31    16.0
2012-12-31    57.7

[4 rows x 1 columns]
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6. To select scalar values, we have two options. The second option given here 
should be faster. Two integers are required, the first for the row and the 
second for the column:
print "Scalar with Iloc", sunspots.iloc[0, 0]
print "Scalar with iat", sunspots.iat[1, 0]

This gives us the first and second values of the dataset as scalars:
Scalar with Iloc 5.0
Scalar with iat 11.0

7. Querying with Booleans works much like the Where clause of SQL.  
The following code queries for values larger than the arithmetic mean.  
Notice that there is a difference when we perform the query on the whole 
DataFrame and when we perform it on a single column:
print "Boolean selection", sunspots[sunspots >  
sunspots.mean()]
print "Boolean selection with column label",  
sunspots[sunspots. Number > sunspots.Number.mean()]

The notable difference is that the first query yields all the rows, with rows 
not conforming to the condition that has a value of NaN. The second query 
returns only the rows where the value is larger than the mean:
Boolean selection             Number
Year              
1700-12-31     NaN
[TRUNCATED]
1759-12-31    54.0
               ...

[314 rows x 1 columns]
Boolean selection with column label             Number
Year              
1705-12-31    58.0
[TRUNCATED]
1870-12-31   139.1
               ...

[127 rows x 1 columns]

The example code is in the query_demo.py file of this book's code bundle:

import Quandl

# Data from http://www.quandl.com/SIDC/SUNSPOTS_A-Sunspot-Numbers-
Annual
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# PyPi url https://pypi.python.org/pypi/Quandl
sunspots = Quandl.get("SIDC/SUNSPOTS_A")
print "Head 2", sunspots.head(2)
print "Tail 2", sunspots.tail(2)

last_date = sunspots.index[-1]
print "Last value", sunspots.loc[last_date]

print "Values slice by date", sunspots["20020101": "20131231"]

print "Slice from a list of indices", sunspots.iloc[[2, 4, -4, -2]]

print "Scalar with Iloc", sunspots.iloc[0, 0]
print "Scalar with iat", sunspots.iat[1, 0]

print "Boolean selection", sunspots[sunspots > sunspots.mean()]
print "Boolean selection with column label",  
sunspots[sunspots.Number > sunspots.Number.mean()]

Statistics with pandas DataFrames
The pandas DataFrame has a dozen statistical methods. The following table lists 
these methods along with a short description:

Method Description
describe This method returns a small table with descriptive statistics.
count This method returns the number of non-NaN items.
mad This method calculates the mean absolute deviation, which is a robust 

measure similar to the standard deviation.
median This method returns the median. This is equivalent to the value at the  

50th percentile.
min This method returns the lowest value.
max This method returns the highest value.
mode This method returns the mode, which is the most frequently occurring value.
std This method returns the standard deviation, which measures dispersion.  

It is the square root of the variance.
var This method returns the variance.
skew This method returns skewness. Skewness is indicative of the  

distribution symmetry.
kurt This method returns kurtosis. Kurtosis is indicative of the distribution shape.
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Using the same data as in the previous example, we will demonstrate these statistical 
methods. The full script is in the stats_demo.py of this book's code bundle:

import Quandl

# Data from http://www.quandl.com/SIDC/SUNSPOTS_A-Sunspot-Numbers-
Annual
# PyPi url https://pypi.python.org/pypi/Quandl
sunspots = Quandl.get("SIDC/SUNSPOTS_A")
print "Describe", sunspots.describe()
print "Non NaN observations", sunspots.count()
print "MAD", sunspots.mad()
print "Median", sunspots.median()
print "Min", sunspots.min()
print "Max", sunspots.max()
print "Mode", sunspots.mode()
print "Standard Deviation", sunspots.std()
print "Variance", sunspots.var()
print "Skewness", sunspots.skew()
print "Kurtosis", sunspots.kurt()

The following is the output of the script:

Describe            Number

count  314.000000

mean    49.528662

std     40.277766

min      0.000000

25%     16.000000

50%     40.000000

75%     69.275000

max    190.200000

[8 rows x 1 columns]

Non NaN observations Number    314

dtype: int64

MAD Number    32.483184

dtype: float64

Median Number    40
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dtype: float64

Min Number    0

dtype: float64

Max Number    190.2

dtype: float64

Mode    Number

0      47

[1 rows x 1 columns]

Standard Deviation Number    40.277766

dtype: float64

Variance Number    1622.298473

dtype: float64

Skewness Number    0.994262

dtype: float64

Kurtosis Number    0.469034

dtype: float64

Data aggregation with pandas 
DataFrames
Data aggregation is a term known from relational databases. In a database query,  
we can group data by the value in a column or columns. We can then perform various 
operations on each of these groups. The pandas DataFrame has similar capabilities. 
We will generate data held in a Python dict and then use this data to create a pandas 
DataFrame. We will then practice the pandas aggregation features:

1. Seed the NumPy random generator to make sure that the generated data will 
not differ between repeated program runs. The data will have four columns:

 ° Weather (a string)
 ° Food (also a string)
 ° Price (a random float)
 ° Number (a random integer between one and nine)
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The use case is that we have the results for some sort of a consumer-purchase 
research, combined with weather and market pricing, where we calculate the 
average of prices and keep a track of the sample size and parameters:
import pandas as pd
from numpy.random import seed
from numpy.random import rand
from numpy.random import random_integers
import numpy as np

seed(42)

df = pd.DataFrame({'Weather' : ['cold', 'hot', 'cold', 'hot',
   'cold', 'hot', 'cold'],
   'Food' : ['soup', 'soup', 'icecream', 'chocolate',
   'icecream', 'icecream', 'soup'],
   'Price' : 10 * rand(7), 'Number' : random_integers(1, 9, 
size=(7,))})

print df

You should get an output similar to the following:
        Food  Number     Price Weather
0       soup       8  3.745401    cold
1       soup       5  9.507143     hot
2   icecream       4  7.319939    cold
3  chocolate       8  5.986585     hot
4   icecream       8  1.560186    cold
5   icecream       3  1.559945     hot
6       soup       6  0.580836    cold

[7 rows x 4 columns]

Please note that the column labels come from the lexically ordered keys  
of the Python dict.

Lexical or lexicographical order is based on the alphabetic 
order of characters in a string.

2. Group the data by the Weather column and then iterate through the  
groups as follows:
weather_group = df.groupby('Weather')

i = 0

for name, group in weather_group:
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   i = i + 1
   print "Group", i, name
   print group

We have two types of weather, hot and cold, so we get two groups:
Group 1 cold
       Food  Number     Price Weather
0      soup       8  3.745401    cold
2  icecream       4  7.319939    cold
4  icecream       8  1.560186    cold
6      soup       6  0.580836    cold

[4 rows x 4 columns]
Group 2 hot
        Food  Number     Price Weather
1       soup       5  9.507143     hot
3  chocolate       8  5.986585     hot
5   icecream       3  1.559945     hot

[3 rows x 4 columns]

3. The weather_group variable is a special pandas object that we get as a  
result of the groupby() method. This object has aggregation methods,  
which are demonstrated as follows:
print "Weather group first\n", weather_group.first()
print "Weather group last\n", weather_group.last()
print "Weather group mean\n", weather_group.mean()

The preceding code snippet prints the first row, last row, and mean of  
each group:
Weather group first
         Food  Number     Price
Weather                        
cold     soup       8  3.745401
hot      soup       5  9.507143

[2 rows x 3 columns]
Weather group last
             Food  Number     Price
Weather                            
cold         soup       6  0.580836
hot      icecream       3  1.559945

[2 rows x 3 columns]
Weather group mean
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           Number     Price
Weather                    
cold     6.500000  3.301591
hot      5.333333  5.684558

[2 rows x 2 columns]

4. Just as in a database query, we are allowed to group on multiple columns. 
The groups attribute will then tell us the groups that are formed and the 
rows in each group:
wf_group = df.groupby(['Weather', 'Food'])
print "WF Groups", wf_group.groups

For each possible combination of weather and food values, a new group  
is created. The membership of each row is indicated by their index values  
as follows:
WF Groups {('hot', 'chocolate'): [3], ('cold', 'icecream'):  
[2, 4], ('hot', 'icecream'): [5], ('hot', 'soup'): [1],  
('cold', 'soup'): [0, 6]}

5. Apply a list of NumPy functions on groups with the agg() method:
print "WF Aggregated\n", wf_group.agg([np.mean, np.median])

Obviously, we could apply even more functions, but it would look  
messier than the following output:
WF Aggregated
                   Number             Price
                     mean  median      mean    median
Weather Food
cold    icecream        6       6  4.440063  4.440063
        soup            7       7  2.163119  2.163119
hot     chocolate       8       8  5.986585  5.986585
        icecream        3       3  1.559945  1.559945
        soup            5       5  9.507143  9.507143

[5 rows x 4 columns]

The full data aggregation example code is in the data_aggregation.py file,  
which can be found in this book's code bundle:

import pandas as pd
from numpy.random import seed
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from numpy.random import rand
from numpy.random import random_integers
import numpy as np

seed(42)

df = pd.DataFrame({'Weather' : ['cold', 'hot', 'cold', 'hot',
   'cold', 'hot', 'cold'],
   'Food' : ['soup', 'soup', 'icecream', 'chocolate',
   'icecream', 'icecream', 'soup'],
   'Price' : 10 * rand(7), 'Number' : random_integers(1, 9, 
size=(7,))})

print df
weather_group = df.groupby('Weather')

i = 0

for name, group in weather_group:
   i = i + 1
   print "Group", i, name
   print group

print "Weather group first\n", weather_group.first()
print "Weather group last\n", weather_group.last()
print "Weather group mean\n", weather_group.mean()

wf_group = df.groupby(['Weather', 'Food'])
print "WF Groups", wf_group.groups

print "WF Aggregated\n", wf_group.agg([np.mean, np.median])

Concatenating and appending 
DataFrames
The pandas DataFrame allows operations that are similar to the inner and outer 
joins of database tables. We can append and concatenate rows as well. To practice 
appending and concatenating of rows, we will reuse the DataFrame from the 
previous section. Let's select the first three rows:

print "df :3\n", df[:3]
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Check that these are indeed the first three rows:

df :3
       Food  Number     Price Weather
0      soup       8  3.745401    cold
1      soup       5  9.507143     hot
2  icecream       4  7.319939    cold

The concat() function concatenates DataFrames. For example, we can concatenate a 
DataFrame that consists of three rows to the rest of the rows, in order to recreate the 
original DataFrame:

print "Concat Back together\n", pd.concat([df[:3], df[3:]])

The concatenation output appears as follows:

Concat Back together
        Food  Number     Price Weather
0       soup       8  3.745401    cold
1       soup       5  9.507143     hot
2   icecream       4  7.319939    cold
3  chocolate       8  5.986585     hot
4   icecream       8  1.560186    cold
5   icecream       3  1.559945     hot
6       soup       6  0.580836    cold

[7 rows x 4 columns]

To append rows, use the append() function:

print "Appending rows\n", df[:3].append(df[5:])

The result is a DataFrame with the first three rows of the original DataFrame and the 
last two rows appended to it:

Appending rows
       Food  Number     Price Weather
0      soup       8  3.745401    cold
1      soup       5  9.507143     hot
2  icecream       4  7.319939    cold
5  icecream       3  1.559945     hot
6      soup       6  0.580836    cold

[5 rows x 4 columns]
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Joining DataFrames
To demonstrate joining, we will use two CSV files: dest.csv and tips.csv. The 
use case behind it is that we are running a taxi company. Every time a passenger 
is dropped off at his or her destination, we add a row to the dest.csv file with the 
employee number of the driver and the destination:

EmpNr,Dest

5,The Hague

3,Amsterdam

9,Rotterdam

Sometimes drivers get a tip, so we want that registered in the tips.csv file (if this 
doesn't seem realistic, please feel free to come up with your own story):

EmpNr,Amount

5,10

9,5

7,2.5

Database-like joins in pandas can be done with either the merge() function or the 
join() DataFrame method. The join() method joins on indices by default, which 
might not be what you want. In SQL—a relational database query language—we 
have the inner join, left outer join, right outer join, and full outer join.

An inner join selects rows from two tables, if and only if values 
match, for columns specified in the join condition. Outer joins 
do not require a match and can potentially return more rows. 
Please refer to the following Wikipedia page on joins:  
http://en.wikipedia.org/wiki/Join_%28SQL%29.

All these join types are supported by pandas, but we will only take a look at inner 
joins and full outer joins.

• A join on the employee number with the merge() function is performed  
as follows:
print "Merge() on key\n", pd.merge(dests, tips, on='EmpNr')

This gives an inner join as the outcome:
Merge() on key
   EmpNr       Dest  Amount
0      5  The Hague      10
1      9  Rotterdam       5

[2 rows x 3 columns]

http://en.wikipedia.org/wiki/Join_%28SQL%29
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• Joining with the join() method requires providing suffixes for the left  
and right operands:
print "Dests join() tips\n", dests.join(tips,  
lsuffix='Dest', rsuffix='Tips')

This method call joins index values so that the result is different from a  
SQL inner join:
Dests join() tips
   EmpNrDest       Dest  EmpNrTips  Amount
0          5  The Hague          5    10.0
1          3  Amsterdam          9     5.0
2          9  Rotterdam          7     2.5

[3 rows x 4 columns]

• An even more explicit way to execute an inner join with merge() is  
as follows:
print "Inner join with merge()\n", pd.merge(dests, tips,  
how='inner')

The output is as follows:
Inner join with merge()
   EmpNr       Dest  Amount
0      5  The Hague      10
1      9  Rotterdam       5

[2 rows x 3 columns]

To make this a full outer join requires only a small change:
print "Outer join\n", pd.merge(dests, tips, how='outer')

The outer join adds rows with NaN values:

Outer join
   EmpNr       Dest  Amount
0      5  The Hague    10.0
1      3  Amsterdam     NaN
2      9  Rotterdam     5.0
3      7        NaN     2.5

[4 rows x 3 columns]
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In a relational database query, these values would have been set to NULL.  
The demo code is in the join_demo.py file of this book's code bundle:

import pandas as pd
from numpy.random import seed
from numpy.random import rand
from numpy.random import random_integers
import numpy as np

seed(42)

df = pd.DataFrame({'Weather' : ['cold', 'hot', 'cold', 'hot',
   'cold', 'hot', 'cold'],
   'Food' : ['soup', 'soup', 'icecream', 'chocolate',
   'icecream', 'icecream', 'soup'],
   'Price' : 10 * rand(7), 'Number' : random_integers(1, 9,  
size=(7,))})

print "df :3\n", df[:3]
print "Concat Back together\n", pd.concat([df[:3], df[3:]])

print "Appending rows\n", df[:3].append(df[5:])

dests = pd.read_csv('dest.csv')
print "Dests\n", dests

tips = pd.read_csv('tips.csv')
print "Tips\n", tips

print "Merge() on key\n", pd.merge(dests, tips, on='EmpNr')
print "Dests join() tips\n", dests.join(tips, lsuffix='Dest',  
rsuffix='Tips')

print "Inner join with merge()\n", pd.merge(dests, tips,  
how='inner')
print "Outer join\n", pd.merge(dests, tips, how='outer')
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Handling missing values
We regularly encounter empty fields in data records. It's best that we accept this and 
learn how to handle this kind of issue in a robust manner. Real data can not only 
have gaps, it can also have wrong values because of faulty measuring equipment, 
for example. In pandas, missing numerical values will be designated as NaN, objects 
as None, and the datetime64 objects as NaT. The outcome of arithmetic operations 
with NaN values is NaN as well. Descriptive statistics methods, such as summation 
and average, behave differently. As we observed in an earlier example, in such a 
case, NaN values are treated as zero values. However, if all the values are NaN during 
summation, for example, the sum returned is still NaN. In aggregation operations, 
NaN values in the column that we group are ignored. We will again load the WHO_
first9cols.csv file into a DataFrame. Recall that this file contains empty fields. 
Let's only select the first three rows, including the headers of the Country and Net 
primary school enrolment ratio male (%) columns as follows:

df = df[['Country', df.columns[-2]]][:2]
print "New df\n", df

We get a DataFrame with two NaN values:

New df
       Country  Net primary school enrolment ratio male (%)
0  Afghanistan                                          NaN
1      Albania                                           94

[2 rows x 2 columns]

The pandas isnull() function checks for missing values as follows:

print "Null Values\n", pd.isnull(df)

The output for our DataFrame is as follows:

Null Values
  Country Net primary school enrolment ratio male (%)
0   False                                        True
1   False                                       False

To count the number of NaN values for each column, we can sum the Boolean values 
returned by isnull(). This works because during summation, True values are 
considered as ones and False values are treated as zeros:

Total Null Values
Country                                        0
Net primary school enrolment ratio male (%)    1
dtype: int64
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Likewise, we can check with the DataFrame notnull() method for any non-missing 
values that are present:

print "Not Null Values\n", df.notnull()

The result of the notnull() method is the opposite of the isnull() function:

Not Null Values
  Country Net primary school enrolment ratio male (%)
0    True                                       False
1    True                                        True

When we double values in a DataFrame that has NaN values, the product will still 
contain NaN values, since doubling is an arithmetic operation:

print "Last Column Doubled\n", 2 * df[df.columns[-1]]

We double the last column, which contains numerical values (doubling string  
values repeats the string):

Last Column Doubled
0    NaN
1    188
Name: Net primary school enrolment ratio male (%), dtype: float64

If we add a NaN value, however, the NaN value wins:

print "Last Column plus NaN\n", df[df.columns[-1]] + np.nan

As you can see, the NaN values declared total victory:

Last Column plus NaN
0   NaN
1   NaN
Name: Net primary school enrolment ratio male (%), dtype: float64

Replace the missing values by a scalar value, for example, 0 (we can't always  
replace missing values with zeros, but sometimes this is good enough) with  
the fillna() method:

print "Zero filled\n", df.fillna(0)

The effect of the preceding line is to replace the NaN value with 0:

Zero filled
       Country  Net primary school enrolment ratio male (%)
0  Afghanistan                                            0
1      Albania                                           94
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The code for this section is in the missing_values.py file of this book's code bundle:

import pandas as pd
import numpy as np

df = pd.read_csv('WHO_first9cols.csv')
# Select first 3 rows of country and Net primary school enrolment 
ratio male (%)
df = df[['Country', df.columns[-2]]][:2]
print "New df\n", df
print "Null Values\n", pd.isnull(df)
print "Total Null Values\n", pd.isnull(df).sum()
print "Not Null Values\n", df.notnull()
print "Last Column Doubled\n", 2 * df[df.columns[-1]]
print "Last Column plus NaN\n", df[df.columns[-1]] + np.nan
print "Zero filled\n", df.fillna(0)

Dealing with dates
Dates are complicated. Just think of the Y2K bug, the pending Year 2038 problem, 
and time zones. It's a mess. We encounter dates naturally when dealing with the 
time-series data. pandas can create date ranges, resample time-series data, and 
perform date arithmetic operations.

Create a range of dates starting from January 1, 1900 with 42 days as follows:

print "Date range", pd.date_range('1/1/1900', periods=42,  
freq='D')

January has less than 42 days, so the end date falls in February as you can check  
for yourself:

Date range <class 'pandas.tseries.index.DatetimeIndex'>
[1900-01-01, ..., 1900-02-11]
Length: 42, Freq: D, Timezone: None

The following table from the pandas official documentation (refer to http://pandas.
pydata.org/pandas-docs/stable/timeseries.html#offset-aliases) describes 
frequencies used in pandas:

Short code Description
B Business day frequency
C Custom business day frequency (experimental)
D Calendar day frequency

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
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Short code Description
W Weekly frequency
M Month end frequency
BM Business month end frequency
MS Month start frequency
BMS Business month start frequency
Q Quarter end frequency
BQ Business quarter end frequency
QS Quarter start frequency
BQS Business quarter start frequency
A Year end frequency
BA Business year end frequency
AS Year start frequency
BAS Business year start frequency
H Hourly frequency
T Minutely frequency
S Secondly frequency
L Milliseconds
U Microseconds

Date ranges have their limits in pandas. Timestamps in pandas (based on the 
NumPy datetime64 data type) are represented by a 64-bit integer with nanosecond 
resolution (a billionth of a second). This limits legal timestamps to dates in the  
range approximately between the year 1677 and 2262 (not all dates in these years  
are valid). The exact midpoint of this range is at January 1, 1970. For example, 
January 1, 1677 cannot be defined with a pandas timestamp, while September 30, 
1677 can, as demonstrated in the following code snippet:

try:
   print "Date range", pd.date_range('1/1/1677', periods=4,  
freq='D')
except:
   etype, value, _ = sys.exc_info()
   print "Error encountered", etype, value

The code snippet prints the following error message:

Date range Error encountered <class  
'pandas.tslib.OutOfBoundsDatetime'> Out of bounds nanosecond  
timestamp: 1677-01-01 00:00:00
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Given all the previous information, calculate the allowed date range with pandas 
DateOffset as follows:

offset = DateOffset(seconds=2 ** 63/10 ** 9)
mid = pd.to_datetime('1/1/1970')
print "Start valid range", mid - offset
print "End valid range", mid + offset'

We get the following range values:

Start valid range 1677-09-21 00:12:44

End valid range 2262-04-11 23:47:16

We can convert a list of strings to dates with pandas. Of course, not all strings  
can be converted. If pandas is unable to convert a string, an error is often reported. 
Sometimes, ambiguities can arise due to differences in the way dates are defined  
in different locales. Use a format string in this case, as follows:

print "With format", pd.to_datetime(['19021112', '19031230'],  
format='%Y%m%d')

The strings should be converted without an error occurring:

With format [datetime.datetime(1902, 11, 12, 0, 0)
 datetime.datetime(1903, 12, 30, 0, 0)]

If we try to convert a string, which is clearly not a date, by default the string is  
not converted:

print "Illegal date", pd.to_datetime(['1902-11-12', 'not a date'])

The second string in the list should not be converted:

Illegal date ['1902-11-12' 'not a date']

To force conversion, set the coerce parameter to True:

print "Illegal date coerced", pd.to_datetime(['1902-11-12', 'not a  
date'], coerce=True)

Obviously, the second string still cannot be converted to a date, so the only valid 
value we can give it is NaT (not a time):

Illegal date coerced <class 'pandas.tseries.index.DatetimeIndex'>
[1902-11-12, NaT]
Length: 2, Freq: None, Timezone: None
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The code for this example is in date_handling.py of this book's code bundle:

import pandas as pd
import sys

print "Date range", pd.date_range('1/1/1900', periods=42,  
freq='D')

try:
   print "Date range", pd.date_range('1/1/1677', periods=4,  
freq='D')
except:
   etype, value, _ = sys.exc_info()
   print "Error encountered", etype, value

print pd.to_datetime(['1900/1/1', '1901.12.11'])

print "With format", pd.to_datetime(['19021112', '19031230'],  
format='%Y%m%d')

print "Illegal date", pd.to_datetime(['1902-11-12', 'not a date'])
print "Illegal date coerced", pd.to_datetime(['1902-11-12', 'not a  
date'], coerce=True)

Pivot tables
A pivot table, as known from Excel, summarizes data. The data in CSV files that we 
have seen in this chapter so far has been in flat files. The pivot table aggregates data 
from a flat file for certain columns and rows. The aggregating operation can be sum, 
mean, standard deviations, and so on. We will reuse the data generating code from 
data_aggregation.py. The pandas API has a top-level pivot_table() function 
and corresponding DataFrame method. With the aggfunc parameter, we can specify 
the aggregation function to use the NumPy sum() function, for instance. The cols 
parameter tells pandas the column to be aggregated. Create a pivot table on the  
Food column as follows:

print pd.pivot_table(df, cols=['Food'], aggfunc=np.sum)

The pivot table we get contains totals for each food item:

Food    chocolate   icecream      soup
Number   8.000000  15.000000  19.00000
Price    5.986585  10.440071  13.83338

[2 rows x 3 columns]
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The following code can be found in pivot_demo.py in this book's code bundle:

import pandas as pd
from numpy.random import seed
from numpy.random import rand
from numpy.random import random_integers
import numpy as np

seed(42)
N = 7
df = pd.DataFrame({
   'Weather' : ['cold', 'hot', 'cold', 'hot',
   'cold', 'hot', 'cold'],
   'Food' : ['soup', 'soup', 'icecream', 'chocolate',
   'icecream', 'icecream', 'soup'],
   'Price' : 10 * rand(N), 'Number' : random_integers(1, 9,  
size=(N,))})

print "DataFrame\n", df
print pd.pivot_table(df, cols=['Food'], aggfunc=np.sum)

Remote data access
The pandas module can retrieve econometric data from various websites on the 
Internet. The types of data that can be downloaded varies from stock prices and 
option prices to macroeconomic data. The websites in question are listed as follows:

• Yahoo! Finance at http://finance.yahoo.com/
• Google Finance at https://www.google.com/finance
• Federal Reserve Economic Data at http://research.stlouisfed.org/

fred2/

• Kenneth R. French - Data Library at http://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/data_library.html

• World Bank Group at http://www.worldbank.org/

It's quite possible that you are not interested in all of this econometric data; therefore, 
in this section, we will only download option data from Yahoo! Finance with the 
purpose of calculating the price of a straddle.

http://finance.yahoo.com/
https://www.google.com/finance
http://research.stlouisfed.org/fred2/
http://research.stlouisfed.org/fred2/
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://www.worldbank.org/
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Options are financial contracts that derive their price from other financial 
instruments, for instance, stocks. The two fundamental types of options are 
calls and puts. Calls give you the right to buy the underlying instrument, 
for example, shares in IBM at a predetermined price called the strike price. 
Puts give you the opposite right to sell at a given strike price.
Option contracts are also tied to an expiration date, after which the 
contract is no longer valid. The rules related to expiration are too 
complicated to explain fully here. For all the finance details, have a look 
at Python for Finance, Yuxing Yan, Packt Publishing, which is listed in the 
Preface. A straddle is an option combination consisting of a put and a call 
option with the same expiration date. For a straddle, these options are 
typically chosen to be at-the-money, meaning that the strike price is close 
to the current stock price. This option strategy is market neutral; it doesn't 
matter whether the stock price goes up or down. However, to make profit, 
the stock price has to move within the expiration period; more than the 
price of the call and put options combined. In other words, the stock price 
has to move more than the price of the straddle. The price of a straddle is, 
therefore, equal to the price change the market currently expects to occur.

In the following example, we will ignore holidays. You can check manually for 
holidays falling on a Friday using the tips from https://stackoverflow.com/
questions/9187215/datetime-python-next-business-day. The market is  
closed on a couple of Fridays each year, such as Good Friday. To calculate the  
price of the AAPL straddle, expiring next Friday, follow these steps:

1. Import the pandas Options class:
from pandas.io.data import Options

2. Define the following function to determine the next Friday starting from 
today with the standard Python code:
def next_friday():
    today = datetime.date.today()
    return today + datetime.timedelta( (4-today.weekday()) % 7 )

https://stackoverflow.com/questions/9187215/datetime-python-next-business-day
https://stackoverflow.com/questions/9187215/datetime-python-next-business-day
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3. For a straddle, we need to get the call and put options, which are closest  
to the current stock price. The AAPL option contracts are a bit problematic. 
For reasons that are too technical to explain here, it might not be possible  
to determine unique option contracts with the strike price closest to the 
current stock price. To be on the safer side, we will select the most popular 
options. By definition, these are the options with the highest open interest. 
Define the following function that retrieves the price of an at-the-money  
put or call as follows:
def get_price(options, is_call, is_put):
   fri = next_friday()
   option_list = options.get_near_stock_price(above_below=1, 
call=is_call, put=is_put, expiry=fri)[0]
   option =  option_list[option_list["Open Int"] == option_
list["Open Int"].max()]
   
   return option["Last"].values[0]

Recall that an option can be either a put or call contract. Therefore, is_put  
and is_call are Boolean variables. We use the pandas get_near_stock_
price() method of the Options class to get the options closest to the current 
stock price. In the pandas DataFrame that we obtain, there is a column named 
Open Int, which is indicative of how popular a given option contract is. We 
select the most popular contract with the max() method. The Last column 
in the DataFrame gives the last traded price. This is the price that we are 
interested in and, therefore, return.

4. Create an Options object for AAPL that gets data from Yahoo! Finance:
options = Options('AAPL', "yahoo")

The rest of the code is simple and self-explanatory. You can find the code in the 
price_straddle.py file in this book's code bundle:

from pandas.io.data import Options
import datetime

def next_friday():
    today = datetime.date.today()
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    return today + datetime.timedelta( (4-today.weekday()) % 7 )

def get_price(options, is_call, is_put):
   fri = next_friday()
   option_list = options.get_near_stock_price(above_below=1, call=is_
call, put=is_put, expiry=fri)[0]
   option =  option_list[option_list["Open Int"] == option_list["Open 
Int"].max()]
   
   return option["Last"].values[0]

def get_straddle():
   options = Options('AAPL', "yahoo")
   call =  get_price(options, True, False)
   put = get_price(options, False, True)

   return call + put

if __name__ == "__main__":
   print get_straddle()

Summary
In this chapter, we focused on pandas—a Python data analysis library. This was an 
introductory tutorial about the basic pandas features and data structures. We realized 
that a lot of the pandas functionality mimics relational database tables, allowing us 
to query, aggregate, and manipulate data efficiently. NumPy and pandas work well 
together and make it possible to perform basic statistical analysis. At this point, you 
might be tempted to think that pandas is all we need for data analysis. However,  
there is more to data analysis than meets the eye.

The next chapter, Chapter 5, Retrieving, Processing, and Storing Data, will teach us skills 
that are essential, though they may not be considered data analysis by some people. 
We will go with a broader definition that considers anything conceivably related to 
data analysis. Usually, when we analyze data, we don't have a whole team of assistants 
to help us with retrieving and storing data. However, since these tasks are important 
for a smooth data analysis flow, we will describe these activities in detail.





Retrieving, Processing, and 
Storing Data

Data can be found everywhere in all shapes and forms. We can get it from the Web, 
by e-mail and FTP, or create it ourselves in a lab experiment or marketing poll. An 
exhaustive overview of how to acquire data in various formats will require many 
more pages than what we have available. Sometimes, we need to store data before 
we can analyze it or after we are done with our analysis. We will also discuss storing 
data in this chapter. Chapter 8, Working with Databases, gives information about various 
databases (relational and NoSQL) and related APIs. The following is a list of the topics 
that we are going to cover in this chapter:

• Writing CSV files with NumPy and pandas
• The binary .npy and pickle formats
• Reading and writing to Excel with pandas
• JSON
• REST web services
• Parsing RSS feeds
• Scraping the Web
• Parsing HTML
• Storing data with PyTables
• HDF5 pandas I/O
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Writing CSV files with NumPy and 
pandas
In the previous chapters, we learned about reading CSV files. Writing CSV files is 
just as straightforward, but uses different functions and methods. Let's first generate 
some data to be stored in the CSV format. Generate a 3 x 4 NumPy array after 
seeding the random generator in the following code snippet.

Set one of the array values to NaN:

np.random.seed(42)

a = np.random.randn(3, 4)
a[2][2] = np.nan
print a

This code will print the array as follows:

[[ 0.49671415 -0.1382643   0.64768854  1.52302986]
 [-0.23415337 -0.23413696  1.57921282  0.76743473]
 [-0.46947439  0.54256004         nan -0.46572975]]

The NumPy savetxt() function is the counterpart of the NumPy loadtxt() 
function and can save arrays in delimited file formats such as CSV. Save the  
array we created with the following function call:

np.savetxt('np.csv', a, fmt='%.2f', delimiter=',', header="  
#1,  #2,  #3,  #4")

In the preceding function call, we specified the name of the file to be saved, the array, 
an optional format, a delimiter (the default is space), and an optional header.

The format parameter is documented at http://docs.python.org/2/
library/string.html#format-specification-mini-language.

View the np.csv file we created with the cat command (cat np.csv) or  
an editor, such as Notepad on Windows. The contents of the file should be  
displayed as follows:

#  #1,  #2,  #3,  #4
0.50,-0.14,0.65,1.52
-0.23,-0.23,1.58,0.77
-0.47,0.54,nan,-0.47

http://docs.python.org/2/library/string.html#format-specification-mini-language
http://docs.python.org/2/library/string.html#format-specification-mini-language
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Create a pandas DataFrame from the random values array:

df = pd.DataFrame(a)
print df

As you can observe, pandas automatically comes up with column names for  
our data:

          0         1         2         3
0  0.496714 -0.138264  0.647689  1.523030
1 -0.234153 -0.234137  1.579213  0.767435
2 -0.469474  0.542560NaN -0.465730

Write a DataFrame to a CSV file with the pandas to_csv() method as follows:

df.to_csv('pd.csv', float_format='%.2f', na_rep="NAN!")

We gave this method the name of the file, an optional format string analogous to  
the format parameter of the NumPy savetxt() function, and an optional string  
that represents NaN. View the pd.csv file to see the following:

,0,1,2,3
0,0.50,-0.14,0.65,1.52
1,-0.23,-0.23,1.58,0.77
2,-0.47,0.54,NAN!,-0.47

Take a look at the code in the writing_csv.py file in this book's code bundle:

import numpy as np
import pandas as pd

np.random.seed(42)

a = np.random.randn(3, 4)
a[2][2] = np.nan
print a
np.savetxt('np.csv', a, fmt='%.2f', delimiter=',', header=" #1,   
#2,  #3,  #4")
df = pd.DataFrame(a)
print df
df.to_csv('pd.csv', float_format='%.2f', na_rep="NAN!")
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Comparing the NumPy .npy binary format 
and pickling pandas DataFrames
Saving data in the CSV format is fine most of the time. It is easy to exchange CSV  
files, since most programming languages and applications can handle this format. 
However, it is not very efficient; CSV and other plaintext formats take up a lot of  
space. Numerous file formats have been invented, which offer a high level of 
compression such as zip, bzip, and gzip.

The following is the complete code for this storage comparison exercise, which  
can also be found in the binary_formats.py file of this book's code bundle:

import numpy as np
import pandas as pd
from tempfile import NamedTemporaryFile
from os.path import getsize

np.random.seed(42)
a = np.random.randn(365, 4)

tmpf = NamedTemporaryFile()
np.savetxt(tmpf, a, delimiter=',')
print "Size CSV file", getsize(tmpf.name)

tmpf = NamedTemporaryFile()
np.save(tmpf, a)
tmpf.seek(0)
loaded = np.load(tmpf)
print "Shape", loaded.shape
print "Size .npy file", getsize(tmpf.name)

df = pd.DataFrame(a)
df.to_pickle(tmpf.name)
print "Size pickled dataframe", getsize(tmpf.name)
print "DF from pickle\n", pd.read_pickle(tmpf.name)

NumPy offers a NumPy-specific format called .npy, which can be used to store 
NumPy arrays. Before demonstrating this format, we will generate a 365 x 4 NumPy 
array filled with random values. This array simulates daily measurements for four 
variables for a year (for instance, a weather data station with sensors measuring 
temperature, humidity, precipitation, and atmospheric pressure). We will use a 
standard Python NamedTemporaryFile to store the data. The temporary file should  
be automatically deleted.
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Store the array in a CSV file and check its size as follows:

tmpf = NamedTemporaryFile()
np.savetxt(tmpf, a, delimiter=',')
print "Size CSV file", getsize(tmpf.name)

The CSV file size is printed as follows:

Size CSV file 36864

Save the array in the NumPy.npy format, load the array, check its shape, and the 
size of the .npy file:

tmpf = NamedTemporaryFile()
np.save(tmpf, a)
tmpf.seek(0)
loaded = np.load(tmpf)
print "Shape", loaded.shape
print "Size .npy file", getsize(tmpf.name)

The call to the seek() method was needed to simulate closing and reopening the 
temporary file. The shape should be printed with the file size:

Shape (365, 4)
Size .npy file 11760

The .npy file is roughly three times smaller than the CSV file, as expected. Python 
lets us store data structures of practically arbitrary complexity. We can store a 
pandas DataFrame or Series as a pickle as well.

The Python pickle is a format to store Python objects to disk or other 
medium. This is called pickling. We can recreate the Python objects from 
storage. This reverse process is called unpickling (refer to http://
docs.python.org/2/library/pickle.html). Pickling has evolved 
over the years, so as a result, various pickle protocols exist. Not all Python 
objects can be pickled; however, alternative implementations such as dill 
exist, which allow more types of Python objects to be pickled. If possible, 
use cPickle (included in the standard Python distribution) because it is 
implemented in C and is, therefore, faster.

Create a DataFrame from the generated NumPy array, write it to a pickle with the  
to_pickle() method, and retrieve it from the pickle with the read_pickle() function:

df = pd.DataFrame(a)
df.to_pickle(tmpf.name)
print "Size pickled dataframe", getsize(tmpf.name)
print "DF from pickle\n", pd.read_pickle(tmpf.name)

http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
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The pickle of the DataFrame is slightly larger than the .npy file, as you can confirm 
in the following printout:

Size pickled dataframe 14991
DF from pickle
           0         1         2         3
0   0.496714 -0.138264  0.647689  1.523030
[TRUNCATED]
59 -2.025143  0.186454 -0.661786  0.852433
         ...       ...       ...       ...

[365 rows x 4 columns]

Storing data with PyTables
Hierarchical Data Format (HDF) is a specification and technology for the storage 
of big numerical data. HDF was created in the supercomputing community and is 
now an open standard. The latest version of HDF is HDF5 and is the one we will be 
using. HDF5 structures data in groups and datasets. Datasets are multidimensional 
homogeneous arrays. Groups can contain other groups or datasets. Groups are like 
directories in a hierarchical filesystem.

The two main HDF5 Python libraries are:

• h5y
• PyTables

In this example, we will be using PyTables. PyTables has a number of dependencies:

• NumPy: We installed NumPy in Chapter 1, Getting Started with  
Python Libraries

• numexpr: This package claims that it evaluates multiple-operator  
array expressions many times faster than NumPy can

• HDF5

The parallel version of HDF5 also requires MPI. HDF5 can be installed 
by obtaining a distribution from http://www.hdfgroup.org/HDF5/
release/obtain5.html and running the following commands 
(which could take a few minutes):
$ gunzip < hdf5-X.Y.Z.tar.gz | tar xf -

$ cd hdf5-X.Y.Z

$ make

$ make install

http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
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In all likelihood, your favorite package manager has a distribution for HDF5.  
Please choose the latest stable version. At the time of writing this book, the most 
recent version was 1.8.12.

The second dependency, numexpr, claims to be able to perform certain operations 
faster than NumPy. It supports multithreading and has its own virtual machine 
implemented in C. Numexpr and PyTables are available on PyPi, so we can  
install these with pip as follows:

$ pip install numexpr

$ pip install tables

Check the installed versions with the following command:

$ pip freeze|grep tables
tables==3.1.1
$ pip freeze|grep numexpr
numexpr==2.4

Again, we will generate random values and fill a NumPy array with those random 
values. Create an HDF5 file and attach the NumPy array to the root node with the 
following code:

tmpf = NamedTemporaryFile()
h5file = tables.openFile(tmpf.name, mode='w', title="NumPy Array")
root = h5file.root
h5file.createArray(root, "array", a)
h5file.close()

Read the HDF5 file and print its file size:

h5file = tables.openFile(tmpf.name, "r")
print getsize(tmpf.name)

The value that we get for the file size is 13824. Once we read an HDF5 file and obtain 
a handle for it, we would normally traverse it to find the data we need. Since we 
only have one dataset, traversing is pretty simple. Call the iterNodes() and read() 
methods to get the NumPy array back:

for node in h5file.iterNodes(h5file.root):
   b = node.read()
   print type(b), b.shape

The type and shape of the dataset corresponds to our expectations:

<type 'numpy.ndarray'> (365, 4)
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The following code can be found in the hf5storage.py file in this book's code bundle:

import numpy as np
import tables
from tempfile import NamedTemporaryFile
from os.path import getsize

np.random.seed(42)
a = np.random.randn(365, 4)

tmpf = NamedTemporaryFile()
h5file = tables.openFile(tmpf.name, mode='w', title="NumPy Array")
root = h5file.root
h5file.createArray(root, "array", a)
h5file.close()

h5file = tables.openFile(tmpf.name, "r")
print getsize(tmpf.name)

for node in h5file.iterNodes(h5file.root):
   b = node.read()
   print type(b), b.shape

h5file.close()

Reading and writing pandas DataFrames 
to HDF5 stores
The HDFStore class is the pandas abstraction responsible for dealing with HDF5 
data. Using random data and temporary files, we will demonstrate this functionality. 
These are the steps to do so:

Give the HDFStore constructor the path to a temporary file and create a store:

store = pd.io.pytables.HDFStore(tmpf.name)
print store

The preceding code snippet will print the file path to the store and its contents, 
which is empty at the moment:

<class 'pandas.io.pytables.HDFStore'>
File path:  
/var/folders/k_/xx_xz6xj0hx627654s3vld440000gn/T/tmpfmwPPB
Empty
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HDFStore has a dict-like interface, meaning that we can store values, for instance, a 
pandas DataFrame with a corresponding lookup key. Store a DataFrame containing 
random data in HDFStore as follows:

store['df'] = df
print store

Now the store contains data as illustrated in the following output:

<class 'pandas.io.pytables.HDFStore'>
File path:  
/var/folders/k_/xx_xz6xj0hx627654s3vld440000gn/T/tmpfwyLIN
/df            frame        (shape->[365,4])

We can access the DataFrame in three ways: with the get() method, a dict-like lookup, 
or dotted access. So let's try this out:

print "Get", store.get('df').shape
print "Lookup", store['df'].shape
print "Dotted", store.df.shape

The shape of the DataFrame is the same for all three access methods:

Get (365, 4)
Lookup (365, 4)
Dotted (365, 4)

We can delete an item in the store by calling the remove() method or with the del 
operator. Obviously, we can remove an item only once. Delete the DataFrame from 
the store:

del store['df']
print "After del\n", store

The store is now empty again:

After del
<class 'pandas.io.pytables.HDFStore'>
File path:  
/var/folders/k_/xx_xz6xj0hx627654s3vld440000gn/T/tmpR6j_K5
Empty

The is_open attribute indicates whether the store is open or not. The store can be 
closed with the close() method. Close the store and check that it is closed:

print "Before close", store.is_open
store.close()
print "After close", store.is_open
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Once closed, the store is no longer open as confirmed by the following:

Before close True
After close False

pandas also provides a DataFrame to_hdf() method and a top-level read_hdf() 
function to read and write HDF data. Call the to_hdf() method and read the data:

df.to_hdf(tmpf.name, 'data', format='table')
print pd.read_hdf(tmpf.name, 'data', where=['index>363'])

The arguments of the reading and writing API are a file path, an identifier for the 
group in the store, and an optional format string. The format can either be fixed or 
table. The fixed format is faster, but you cannot append or search. The table format 
corresponds to a PyTables Table structure and allows searching and selection. We 
get the following values for the query on the DataFrame:

            0         1         2         3
364  0.753342  0.381158  1.289753  0.673181

[1 rows x 4 columns]

The pd_hdf.py file in this book's code bundle contains the following code:

import numpy as np
import pandas as pd
from tempfile import NamedTemporaryFile

np.random.seed(42)
a = np.random.randn(365, 4)

tmpf = NamedTemporaryFile()
store = pd.io.pytables.HDFStore(tmpf.name)
print store

df = pd.DataFrame(a)
store['df'] = df
print store

print "Get", store.get('df').shape
print "Lookup", store['df'].shape
print "Dotted", store.df.shape

del store['df']
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print "After del\n", store

print "Before close", store.is_open
store.close()
print "After close", store.is_open

df.to_hdf(tmpf.name, 'data', format='table')
print pd.read_hdf(tmpf.name, 'data', where=['index>363'])

Reading and writing to Excel with pandas
Excel files contain a lot of important data. Of course, we can export that data in other 
more portable formats such as CSV. However, it is more convenient to read and 
write Excel files with Python. As is common in the Python world, there is more than 
one project with the goal of providing Excel I/O capabilities. The modules that we 
will need to install to get Excel I/O to work with pandas are somewhat obscurely 
documented. The reason is that the projects that pandas depends on are independent 
and rapidly developing. The pandas package is picky about the files it accepts as 
Excel files. These files must have the .xls or .xlsx suffix; otherwise, we get the 
following error:

ValueError: No engine for filetype: ''

This is easy to fix. For instance, if we create a temporary file, we just give it  
the proper suffix. If you don't install anything, you will get the following  
error message:

ImportError: No module named openpyxl.workbook

The following command gets rid of the error by installing openpyxl:

$ pip install openpyxl

Check the version with the following command:

$ pip freeze|grep openpyxl

openpyxl==2.0.3

The openpyxl module is a port of PHPExcel and supports the reading and writing  
of .xlsx files.

If for some reason the pip install method didn't work 
for you, you can find alternative installation instructions at 
http://pythonhosted.org/openpyxl/.

http://pythonhosted.org/openpyxl/
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Even after installing openpyxl, you might get the following error:

ImportError: No module named style

Fix this by installing xlsxwriter:

$ pip install xlsxwriter

Also, we can check the xlsxwriter version again.  I have installed version 0.5.5.  
The xlsxwriter module is also needed to read the .xlsx files. At this point,  
you will most likely get the following error:

ImportError: No module named xlrd

This module can be installed with pip as well:

$ pip install xlrd

$ pip freeze|grep xlrd

xlrd==0.9.3

The xlrd module is able to extract data from the .xls and .xlsx files. Let's generate 
random values to populate a pandas DataFrame, create an Excel file from the 
DataFrame, recreate the DataFrame from the Excel file, and apply the mean() method 
to it. For the sheet of the Excel file, we can either specify a zero-based index or name.

Refer to the pd_xls.py file in the book's code bundle, which will contain the 
following code:

import numpy as np
import pandas as pd
from tempfile import NamedTemporaryFile

np.random.seed(42)
a = np.random.randn(365, 4)

tmpf = NamedTemporaryFile(suffix='.xlsx')
df = pd.DataFrame(a)
print tmpf.name
df.to_excel(tmpf.name, sheet_name='Random Data')
print "Means\n", pd.read_excel(tmpf.name, 'Random Data').mean()

Create an Excel file with the to_excel() method:

df.to_excel(tmpf.name, sheet_name='Random Data')
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Recreate the DataFrame with the top-level read_excel() function:

print "Means\n", pd.read_excel(tmpf.name, 'Random Data').mean()

The means are printed as follows:

/var/folders/k_/xx_xz6xj0hx627654s3vld440000gn/T/tmpeBEfnO.xlsx

Means

0    0.037860

1    0.024483

2    0.059836

3    0.058417

dtype: float64

Using REST web services and JSON
Representational State Transfer (REST) web services use the REST-architectural  
style (for more information refer to http://en.wikipedia.org/wiki/
Representational_state_transfer). In the usual context of the HTTP(S) protocol, 
we have the GET, POST, PUT, and DELETE methods. These methods can be aligned 
with common operations on the data to create, request, update, or delete data items.

In a RESTful API, data items are identified by URIs such as http://example.com/
resources or http://example.com/resources/item42. REST is not an official 
standard but is so widespread that we need to know about it. Web services often 
use JavaScript Object Notation (JSON) (for more information refer to http://
en.wikipedia.org/wiki/JSON) to exchange data. In this format, data is written  
using the JavaScript notation. The notation is similar to the syntax for Python lists  
and dicts. In JSON, we can define arbitrarily complex data consisting of a combination 
of lists and dicts. To illustrate this, we will use a very simple JSON string that 
corresponds to a dictionary, which gives geographical information for a particular  
IP address:

{"country":"Netherlands","dma_code":"0","timezone":"Europe\/Amsterdam 
","area_code":"0","ip":"46.19.37.108","asn":"AS196752","continent_cod 
e":"EU","isp":"Tilaa  
V.O.F.","longitude":5.75,"latitude":52.5,"country_code":"NL","country 
_code3":"NLD"}

You can get this data from  
http://www.telize.com/geoip/46.19.37.108.

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/JSON
http://www.telize.com/geoip/46.19.37.108
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The following is the code for the json_demo.py file:

import json

json_str = '{"country":"Netherlands","dma_
code":"0","timezone":"Europe\/Amsterdam","area_code":"0","ip":"46.1
9.37.108","asn":"AS196752","continent_code":"EU","isp":"Tilaa V.O.
F.","longitude":5.75,"latitude":52.5,"country_code":"NL","country_
code3":"NLD"}'

data = json.loads(json_str)
print "Country", data["country"]
data["country"] = "Brazil"
print json.dumps(data)

Python has a standard JSON API that is really easy to use. Parse a JSON string  
with the loads() function:

data = json.loads(json_str)

Access the country value with the following code:

print "Country", data["country"]

The previous line should print the following:

Country Netherlands

Overwrite the country value and create a string from the new JSON data:

data["country"] = "Brazil"
printjson.dumps(data)

The result is JSON with a new country value. The order is not preserved as it 
usually happens for dicts:

{"longitude": 5.75, "ip": "46.19.37.108", "isp": "Tilaa V.O.F.",  
"area_code": "0", "dma_code": "0", "country_code3": "NLD",  
"continent_code": "EU", "country_code": "NL", "country": "Brazil",  
"latitude": 52.5, "timezone": "Europe/Amsterdam", "asn": "AS196752"}

Reading and writing JSON with pandas
We can easily create a pandas Series from the JSON string in the previous example. 
The pandas read_json() function can create a pandas Series or pandas DataFrame.
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The following example code can be found in pd_json.py of this book's code bundle:

import pandas as pd

json_str = '{"country":"Netherlands","dma_
code":"0","timezone":"Europe\/Amsterdam","area_code":"0","ip":"46.1
9.37.108","asn":"AS196752","continent_code":"EU","isp":"Tilaa V.O.
F.","longitude":5.75,"latitude":52.5,"country_code":"NL","country_
code3":"NLD"}'

data = pd.read_json(json_str, typ='series')
print "Series\n", data

data["country"] = "Brazil"
print "New Series\n", data.to_json()

We can either specify a JSON string or the path of a JSON file. Call the read_json() 
function to create a pandas Series from the JSON string in the previous example:

data = pd.read_json(json_str, typ='series')
print "Series\n", data

In the resulting Series, the keys are ordered in alphabetical order:

Series
area_code                        0
asn                       AS196752
continent_code                  EU
country                Netherlands
country_code                    NL
country_code3                  NLD
dma_code                         0
ip                    46.19.37.108
ispTilaa V.O.F.
latitude                      52.5
longitude                     5.75
timezone          Europe/Amsterdam
dtype: object

Change the country value again and convert the pandas Series to a JSON string 
with the to_json() method:

data["country"] = "Brazil"
print "New Series\n", data.to_json()
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In the new JSON string, the key order is preserved, but we also have a different 
country value:

New Series

{"area_code":"0","asn":"AS196752","continent_code":"EU","country":"Br 
azil","country_code":"NL","country_code3":"NLD","dma_code":"0","ip":" 
46.19.37.108","isp":"Tilaa  
V.O.F.","latitude":52.5,"longitude":5.75,"timezone":"Europe\/Amsterda 
m"}

Parsing RSS and Atom feeds
Really Simple Syndication (RSS) and Atom feeds (refer to http://en.wikipedia.
org/wiki/RSS) are often used for blogs and news. These type of feeds follow the 
publish/subscribe model. For instance, Packt Publishing has an RSS feed with article 
and book announcements. We can subscribe to the feed to get timely updates. The 
Python feedparser module allows us to parse RSS and Atom feeds easily without 
dealing with a lot of technical details. The feedparser module can be installed with  
pip as follows:

$ sudo pip install feedparser
$ pip freeze|grep feedparser
feedparser==5.1.3

After parsing an RSS file, we can access the underlying data using a dotted notation. 
Parse the Packt Publishing RSS feed and print the number of entries:

import feedparser as fp

rss = fp.parse("http://www.packtpub.com/rss.xml")

print "# Entries", len(rss.entries)

The number of entries is printed (the number may vary for each program run):

# Entries 50

Print entry titles and summaries if the entry contains the word Python with the 
following code:

for i, entry in enumerate(rss.entries):
   if "Python" in entry.summary:
      print i, entry.title
      print entry.summary

http://en.wikipedia.org/wiki/RSS
http://en.wikipedia.org/wiki/RSS
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On this particular run, the following was printed (if you try it for yourself, you may 
get something else or nothing at all if the filter is too restrictive):

42 Create interactive plots with matplotlib using Pack&#039;t new  
book and eBook

About the author: Alexandre Devert is a scientist. He is an  
enthusiastic Python coder as well and never gets enough of it! He  
used to teach data mining, software engineering, and research in  
numerical optimization.

Matplotlib is part of the Scientific Python modules collection. It  
provides a large library of customizable plots and a comprehensive  
set of backends. It tries to make easy things easy and make hard  
things possible. It can help users generate plots, add dimensions to  
plots, and also make plots interactive with just a few lines of code.  
Also, matplotlib integrates well with all common GUI modules.

The following code can be found in the rss.py file of this book's code bundle:

import feedparser as fp

rss = fp.parse("http://www.packtpub.com/rss.xml")

print "# Entries", len(rss.entries)

for i, entry in enumerate(rss.entries):
   if "Python" in entry.summary:
      print i, entry.title
      print entry.summary

Parsing HTML with Beautiful Soup
Hypertext Markup Language (HTML) is the fundamental technology used to  
create web pages. HTML is composed of HTML elements that consist of so-called 
tags enveloped in slanted brackets (for example, <html>). Often, tags are paired 
with a starting and closing tag in a hierarchical tree-like structure. An HTML-related 
draft specification was first published by Berners-Lee in 1991. Initially, there were 
only 18 HTML elements. The formal HTML definition was published by the Internet 
Engineering Task Force (IETF) in 1993. The IETF completed the HTML 2.0 standard  
in 1995. Around 2013, the latest HTML version, HTML5, was specified. HTML is not  
a very strict standard if compared to XHTML and XML.
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Modern browsers tolerate a lot of violations of the standard, making web pages a 
form of unstructured data. We can treat HTML as a big string and perform string 
operations on it with regular expressions, for example. This approach works only  
for simple projects.

I have worked on web scraping projects in a professional setting; so from personal 
experience, I can tell you that we need more sophisticated methods. In a real world 
scenario, it may be necessary to submit HTML forms programmatically, for instance, 
to log in, navigate through pages, and manage cookies robustly. The problem with 
scraping data from the Web is that if we don't have full control of the web pages that 
we are scraping, we may have to change our code quite often. Also, programmatic 
access may be actively blocked by the website owner, or may even be illegal. For these 
reasons, you should always try to use other alternatives first, such as a REST API.

In the event that you must retrieve the data by scraping, it is recommended to  
use the Python Beautiful Soup API. This API can extract data from both HTML  
and XML files. New projects should use Beautiful Soup 4, since Beautiful Soup 3  
is no longer developed. We can install Beautiful Soup 4 with the following  
command (similar to easy_install):

$ pip install beautifulsoup4

$ pip freeze|grep beautifulsoup

beautifulsoup4==4.3.2

On Debian and Ubuntu, the package name is python-bs4. We 
can also download the source from http://www.crummy.com/
software/BeautifulSoup/download/4.x/. After unpacking 
the source, we can install Beautiful Soup from the source directory 
with the following command:
$ python setup.py install

If this doesn't work, you are allowed to simply package Beautiful Soup along with 
your own code. To demonstrate parsing HTML, I have generated the loremIpsum.
html file in this book's code bundle with the generator from http://loripsum.
net/. Then, I edited the file a bit. The content of the file is a first century BC text  
in Latin by Cicero, which is a traditional way to create mock-ups of websites.  
Refer to the following screenshot for the top part of the web page:

http://www.crummy.com/software/BeautifulSoup/download/4.x/
http://www.crummy.com/software/BeautifulSoup/download/4.x/
http://loripsum.net/
http://loripsum.net/


Chapter 5

[ 137 ]

In this example, we will be using Beautiful Soup 4 and the standard Python  
regular expression library:

Import these libraries with the following lines:

from bs4 import BeautifulSoup
import re

Open the HTML file and create a BeautifulSoup object with the following line:

soup = BeautifulSoup(open('loremIpsum.html'))

Using a dotted notation, we can access the first <div> element. The <div> HTML 
element is used to organize and style elements. Access the first div element as follows:

print "First div\n", soup.div

The resulting output is an HTML snippet with the first <div> tag and all the tags  
it contains:

First div
<div class="tile">
<h4>Development</h4>
     0.10.1 - July 2014<br/>
</div>
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This particular div element has a class attribute with the value tile. 
The class attribute pertains to the CSS style that is to be applied to 
this div element. Cascading Style Sheets (CSS) is a language used 
to style elements of a web page. CSS is a widespread specification 
that handles the look and feel of web pages through CSS classes. CSS 
aids in separating content and presentation by defining colors, fonts, 
and the layout of elements. The separation leads to a simpler and 
cleaner design.

Attributes of a tag can be accessed in a dict-like fashion. Print the class attribute value 
of the <div> tag as follows:

print "First div class", soup.div['class']
First div class ['tile']

The dotted notation allows us to access elements at an arbitrary depth. For instance, 
print the text of the first <dfn> tag as follows:

print "First dfn text", soup.dl.dt.dfn.text

A line with Latin text is printed (Solisten, I pray):

First dfn text Quareattende, quaeso.

Sometimes, we are only interested in the hyperlinks of an HTML document. For 
instance, we may only want to know which document links to which other documents. 
In HTML, links are specified with the <a> tag. The href attribute of this tag holds the 
URL the link points to. The BeautifulSoup class has a handy find_all() method, 
which we will use a lot. Locate all the hyperlinks with the find_all() method:

for link in soup.find_all('a'):
      print "Link text", link.string, "URL", link.get('href')

There are three links in the document with the same URL, but with three different texts:

Link text loripsum.net URL http://loripsum.net/
Link text Potera tautem inpune; URL http://loripsum.net/
Link text Is es profecto tu. URL http://loripsum.net/

We can omit the find_all() method as a shortcut. Access the contents of all the <div> 
tags as follows:

for i, div in enumerate(soup('div')):
   print i, div.contents
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The contents attribute holds a list with HTML elements:

0 [u'\n', <h4>Development</h4>, u'\n     0.10.1 - July  
2014', <br/>, u'\n']
1 [u'\n', <h4>Official Release</h4>, u'\n     0.10.0 June  
2014', <br/>, u'\n']
2 [u'\n', <h4>Previous Release</h4>, u'\n     0.09.1 June  
2013', <br/>, u'\n']

A tag with a unique ID is easy to find. Select the <div> element with the official 
ID and print the third element:

official_div = soup.find_all("div", id="official")
print "Official Version",  
official_div[0].contents[2].strip()

Many web pages are created on the fly based on visitor input or external data. This 
is how most content from online shopping websites is served. If we are dealing with 
a dynamic website, we have to remember that any tag attribute value can change 
in a moment's notice. Typically, in a large website, IDs are automatically generated 
resulting in long alphanumeric strings. It's best to not look for exact matches but use 
regular expressions instead. We will see an example of a match based on a pattern 
later. The previous code snippet prints a version number and month as you might  
find on a website for a software product:

Official Version 0.10.0 June 2014

As you know, class is a Python keyword. To query the class attribute in a tag, we 
match it with class_. Get the number of <div> tags with a defined class attribute:

print "# elements with class",  
len(soup.find_all(class_=True))

We find three tags as expected:

# elements with class 3

Find the number of <div> tags with the class "tile":

tile_class = soup.find_all("div", class_="tile")
print "# Tile classes", len(tile_class)

There are two <div> tags with class tile and one <div> tag with class notile:

# Tile classes 2
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Define a regular expression that will match all the <div> tags:

print "# Divs with class containing tile",  
len(soup.find_all("div", class_=re.compile("tile")))

Again, three occurrences are found:

# Divs with class containing tile 3

In CSS, we can define patterns in order to match elements. These patterns are  
called CSS selectors and are documented at http://www.w3.org/TR/selectors/. 
We can select elements with the CSS selector from the BeautifulSoup class too.  
Use the select() method to match the <div> element with class notile:

print "Using CSS selector\n", soup.select('div.notile')

The following is printed on the screen:

Using CSS selector
[<div class="notile">
<h4>Previous Release</h4>
     0.09.1 June 2013<br/>
</div>]

An HTML-ordered list looks like a numbered list of bullets. The ordered list consists 
of an <ol> tag and several <li> tags for each list item. The result from the select() 
method can be sliced as any Python list. Refer to the following screenshot of the 
ordered list:

Select the first two list items in the ordered list:

print "Selecting ordered list list items\n",  
soup.select("ol> li")[:2]

The following two list items are shown:

Selecting ordered list list items
[<li>Cur id non ita fit?</li>, <li>In qua  
si nihil est praeter rationem, sit in una virtute finis  
bonorum;</li>]

http://www.w3.org/TR/selectors/
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In the CSS selector mini language, we start counting from 1. Select the second list 
item as follows:

print "Second list item in ordered list",  
soup.select("ol>li:nth-of-type(2)")

The second list item can be translated in English as In which, if there is nothing contrary 
to reason, let him be the power of the end of the good things in one:

Second list item in ordered list [<li>In qua  
si nihil est praeter rationem, sit in una virtute finis  
bonorum;</li>]

If we are looking at a web page in a browser, we may decide to retrieve the text 
nodes that match a certain regular expression. Find all the text nodes containing  
the string 2014 with the text attribute:

print "Searching for text string",  
soup.find_all(text=re.compile("2014"))

This prints the following text nodes:

Searching for text string [u'\n     0.10.1 - July 2014',  
u'\n     0.10.0 June 2014']

This was just a brief overview of what the BeautifulSoup class can do for us. 
Beautiful Soup can also be used to modify HTML or XML documents. It has  
utilities to troubleshoot, pretty print, and deal with different character sets.  
Please refer to soup_request.py for the code:

from bs4 import BeautifulSoup
import re

soup = BeautifulSoup(open('loremIpsum.html'))

print "First div\n", soup.div
print "First div class", soup.div['class']

print "First dfn text", soup.dl.dt.dfn.text

for link in soup.find_all('a'):
   print "Link text", link.string, "URL", link.get('href')

# Omitting find_all
for i, div in enumerate(soup('div')):
   print i, div.contents

#Div with id=official
official_div = soup.find_all("div", id="official")
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print "Official Version", official_div[0].contents[2].strip()

print "# elements with class", len(soup.find_all(class_=True))

tile_class = soup.find_all("div", class_="tile")
print "# Tile classes", len(tile_class)

print "# Divs with class containing tile", len(soup.find_all("div", 
class_=re.compile("tile")))

print "Using CSS selector\n", soup.select('div.notile')
print "Selecting ordered list list items\n", soup.select("ol>  
li")[:2]
print "Second list item in ordered list", soup.select("ol>li:nth- 
of-type(2)")

print "Searching for text string", soup.find_all(text=re.
compile("2014"))

Summary
In this chapter, we learned about retrieving, processing, and storing data in  
different formats. The formats include the CSV, NumPy .npy format, Python  
pickle, JSON, RSS, and HTML. We used the NumPy pandas, json, feedparser,  
and Beautiful Soup libraries.

The next chapter Chapter 6, Data Visualization, is about the important topic of 
visualizing data with Python. Visualization is something we often do when we  
start analyzing data. It helps to display relations between variables in the data.  
By visualizing the data, we can also get an idea about its statistical properties.



Data Visualization
One of the first steps in data analysis is visualization. Even when looking at a table of 
values, we can form a mental image of what the data might look like when graphed. 
Data visualization calls for the conception and analysis of the visual representation of 
information, signifying data that has been abstracted in some formal pattern, including 
properties or quantities for units of measurements of the data. Data visualization is 
tightly associated with scientific visualization and statistical graphics. The Python 
matplotlib (all lowercase) library is a well-known plotting library based on NumPy, 
which we will be using in this chapter. It has an object-oriented and a procedural 
MATLAB-like API, which can be used in parallel. A gallery with matplotlib examples 
can be found at http://matplotlib.org/gallery.html. The following is a list of 
topics that will be covered in this chapter:

• Basic matplotlib plots
• Logarithmic plots
• Scatter plots
• Legends and annotations
• Three-dimensional plots
• Plotting in pandas
• Lag plots
• Autocorrelation plots
• Plot.ly

http://matplotlib.org/gallery.html
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matplotlib subpackages
If we pick up our pkg_check.py file provided in the code bundle and change the 
code to list the matplotlib subpackages, we get the following result:

matplotlib version 1.3.1
matplotlib.axes
matplotlib.backends
matplotlib.compat
matplotlib.delaunay DESCRIPTION :Author: Robert Kern  
<robert.kern@gmail.com> :Copyright: Copyright 2005 Robert Kern.  
:License: BSD-style license. See LICENSE.tx
matplotlib.projections
matplotlib.sphinxext
matplotlib.style
matplotlib.testing
matplotlib.tests
matplotlib.tri

The subpackage names are pretty self-explanatory. Backends refers to the way  
the end result is output. This can be one of several file formats or on the screen  
in a graphical user interface. For completeness, refer to the following snippet  
with the changed lines in pkg_check.py:

import matplotlib as mpl

print "matplotlib version", mpl.__version__

print_desc("matplotlib", mpl.__path__)

Basic matplotlib plots
We installed matplotlib and IPython in Chapter 1, Getting Started with Python Libraries. 
Please go back to that chapter if you need to. The procedural MATLAB-like matplotlib 
API is considered by many as simpler to use than the object-oriented API, so we will 
demonstrate this procedural API first. To create a very basic plot in matplotlib, we 
need to invoke the plot() function in the matplotlib.pyplot subpackage. This 
function produces a two-dimensional plot for a single list or multiple lists of points 
with known x and y coordinates.
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Optionally, we can pass a format parameter, for instance, to specify a dashed line 
style. The list of format options and parameters for the plot() function is pretty 
long, but easy to look up with the following commands:

$ ipython -pylab
In [1]: help(plot)

In this example, we will plot two lines: one with a solid line style (the default) and 
the other with a dashed line style.

The following demo code is in the basic_plot.py file in this book's code bundle:

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 20)

plt.plot(x,  .5 + x)
plt.plot(x, 1 + 2 * x, '--')
plt.show()

Please follow the ensuing steps to plot the aforementioned lines:

1. First, we will specify the x coordinates with the NumPy linspace() 
function. Specify a start value of 0 and an end value of 20:
x = np.linspace(0, 20)

2. Plot the lines as follows:
plt.plot(x,  .5 + x)
plt.plot(x, 1 + 2 * x, '--')

3. At this juncture, we can either save the plot to a file with the savefig() 
function or show the plot on the screen with the show() function.  
Show the plot on the screen as follows:
plt.show()
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Refer to the following plot for the end result:

Logarithmic plots
Logarithmic plots (or log plots) are plots that use a logarithmic scale.  
A logarithmic scale shows the value of a variable which uses intervals that  
match orders of magnitude, instead of a regular linear scale. There are two types  
of logarithmic plots. The log-log plot employs logarithmic scaling on both axes  
and is represented in matplotlib by the matplotlib.pyplot.loglog() function. 
The semi-log plots use linear scaling on one axis and logarithmic scaling on the 
other axis. These plots are represented in the matplotlib API by the semilogx() 
and semilogy() functions. On log-log plots, power laws appear as straight lines. 
On semi-log plots, straight lines represent exponential laws.

Moore's law is such a law. It's not a physical, but more of an empirical observation. 
Gordon Moore discovered a trend of the number of transistors in integrated circuits 
doubling every two years. On http://en.wikipedia.org/wiki/Transistor_
count#Microprocessors, a table can be found with transistor counts for various 
microprocessors and the corresponding year of introduction.

http://en.wikipedia.org/wiki/Transistor_count#Microprocessors
http://en.wikipedia.org/wiki/Transistor_count#Microprocessors
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From the table, I have prepared a CSV file, transcount.csv, containing only the 
transistor count and year. We still need to average the transistor counts for each year. 
Averaging and loading can be done with pandas. If you need to, refer to Chapter 4, 
pandas Primer, for tips. Once we have the average transistor count for each year in  
the table, we can try to fit a straight line to the log of the counts versus the years.  
The NumPy polyfit() function allows to fit data to a polynomial.

Refer to the log_plots.py file in this book's code bundle for the following code:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

df = pd.read_csv('transcount.csv')
df = df.groupby('year').aggregate(np.mean)
years = df.index.values
counts = df['trans_count'].values
poly = np.polyfit(years, np.log(counts), deg=1)
print "Poly", poly
plt.semilogy(years, counts, 'o')
plt.semilogy(years, np.exp(np.polyval(poly, years)))
plt.show()

The following steps will explain the preceding code:

1. Fit the data as follows:
poly = np.polyfit(years, np.log(counts), deg=1)
print "Poly", poly

2. The result of the fit is a Polynomial object (see http://docs.scipy.org/
doc/numpy/reference/generated/numpy.polynomial.polynomial.
Polynomial.html#numpy.polynomial.polynomial.Polynomial). The 
string representation of this object gives the polynomial coefficients with  
a descending order of degrees, so the highest degree coefficient comes first. 
For our data, we obtain the following polynomial coefficients:
Poly [  3.61559210e-01  -7.05783195e+02]

3. The NumPy polyval() function enables us to evaluate the polynomial we 
just obtained. Plot the data and fit with the semilogy() function:
plt.semilogy(years, counts, 'o')
plt.semilogy(years, np.exp(np.polyval(poly, years)))

http://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.polynomial.Polynomial.html#numpy.polynomial.polynomial.Polynomial
http://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.polynomial.Polynomial.html#numpy.polynomial.polynomial.Polynomial
http://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.polynomial.Polynomial.html#numpy.polynomial.polynomial.Polynomial


Data Visualization

[ 148 ]

The trend line is drawn as a solid line and the data points as filled circles. Refer to the 
following plot for the end result:

Scatter plots
A scatter plot shows the relationship between two variables in a Cartesian 
coordinate system. The position of each data point is determined by the values of 
these two variables. The scatter plot can provide hints for any correlation between 
the variables under study. An upward trending pattern suggests positive correlation. 
A bubble chart is an extension of the scatter plot. In a bubble chart, the value of a 
third variable is relatively represented by the size of the bubble surrounding a data 
point, hence the name.

On http://en.wikipedia.org/wiki/Transistor_count#GPUs, there is also a table 
with transistor counts for Graphical Processor Units (GPUs).

http://en.wikipedia.org/wiki/Transistor_count#GPUs
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GPUs are specialized circuits used to display graphics efficiently. Because of the 
way modern display hardware works, GPUs can process data with highly parallel 
operations. GPUs are a new development in computing. In the gpu_transcount.csv 
file in this book's code bundle, you will notice that we don't have many data points. 
Dealing with missing data is a recurring bubble chart issue. We will define a default 
bubble size for missing values. Again, we will load and average the data annually. 
Then, we will merge the transistor counts for the CPUs and GPUs DataFrame 
on the year indices with an outer join. The NaN values will be set to 0 (works for 
this example, but sometimes it's not a good idea to set NaN values to 0). All the 
functionality described in the preceding text was covered in Chapter 4, pandas Primer; 
therefore, please refer to that chapter if needed. The matplotlib API provides the 
scatter() function for scatter plots and bubble charts. We can view documentation 
for this function with the following commands:

$ ipython –pylab

In [1]: help(scatter)

In this example, we will specify the s parameter, which is related to the size of the 
bubble. The c parameter specifies colors. Unfortunately, you will not be able to see 
colors in this book, so you will have to run the examples yourself to see different 
colors. The alpha parameter determines how transparent the bubbles on the plot  
will be. This value varies between 0 (fully transparent) and 1 (opaque). Create a 
bubble chart as follows:

plt.scatter(years, cnt_log, c= 200 * years, s=20 + 200 *  
gpu_counts/gpu_counts.max(), alpha=0.5)

The following code for this example can also be found in the scatter_plot.py file 
in this book's code bundle:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

df = pd.read_csv('transcount.csv')
df = df.groupby('year').aggregate(np.mean)

gpu = pd.read_csv('gpu_transcount.csv')
gpu = gpu.groupby('year').aggregate(np.mean)

df = pd.merge(df, gpu, how='outer', left_index=True, right_index=True)
df = df.replace(np.nan, 0)
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print df
years = df.index.values
counts = df['trans_count'].values
gpu_counts = df['gpu_trans_count'].values
cnt_log = np.log(counts)
plt.scatter(years, cnt_log, c= 200 * years, s=20 + 200 * gpu_counts/
gpu_counts.max(), alpha=0.5)
plt.show()

Refer to the following plot for the end result:

Legends and annotations
Legends and annotations are effective tools to display information required to 
comprehend a plot in a glance. A typical plot will have the following additional 
information elements:

• A legend describing the various data series in the plot. This is provided by 
invoking the matplotlib legend() function and supplying the labels for each 
data series.
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• Annotations for important points in the plot. The matplotlib annotate() 
function can be used for this purpose. A matplotlib annotation consists of a 
label and an arrow. This function has many parameters describing the label 
and arrow style and position, so you may need to call help(annotate) for  
a detailed description.

• Labels on the horizontal and vertical axes. These labels can be drawn by  
the xlabel() and ylabel() functions. We need to give these functions the 
text of the labels as a string and optional parameters such as the font size  
of the label.

• A descriptive title for the graph with the matplotlib title() function. 
Typically, we will only give this function a string representing the title.

• A grid is also nice to have in order to localize points easily. The matplotlib 
grid() function turns the plot grid on and off.

We will modify the bubble chart code from the previous example and add the 
straight line fit from the second example in this chapter. In this setup, add a label  
to the data series as follows:

plt.plot(years, np.polyval(poly, years), label='Fit')
plt.scatter(years, cnt_log, c= 200 * years, s=20 + 200 *  
gpu_counts/gpu_counts.max(), alpha=0.5, label="Scatter Plot")

Let's annotate the first GPU in our dataset. To do this, get a hold of the relevant point, 
define the label of the annotation, specify the style of the arrow (the arrowprops 
argument), and make sure that the annotation hovers above the point in question:

gpu_start = gpu.index.values.min()
y_ann = np.log(df.at[gpu_start, 'trans_count'])
ann_str = "First GPU\n %d" % gpu_start
plt.annotate(ann_str, xy=(gpu_start, y_ann),  
arrowprops=dict(arrowstyle="->"), xytext=(-30, +70),  
textcoords='offset points')

The complete code example is in the legend_annotations.py file in this book's  
code bundle:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

df = pd.read_csv('transcount.csv')
df = df.groupby('year').aggregate(np.mean)
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gpu = pd.read_csv('gpu_transcount.csv')
gpu = gpu.groupby('year').aggregate(np.mean)

df = pd.merge(df, gpu, how='outer', left_index=True, right_index=True)
df = df.replace(np.nan, 0)
years = df.index.values
counts = df['trans_count'].values
gpu_counts = df['gpu_trans_count'].values

poly = np.polyfit(years, np.log(counts), deg=1)
plt.plot(years, np.polyval(poly, years), label='Fit')

gpu_start = gpu.index.values.min()
y_ann = np.log(df.at[gpu_start, 'trans_count'])
ann_str = "First GPU\n %d" % gpu_start
plt.annotate(ann_str, xy=(gpu_start, y_ann), arrowprops=dict(arrowsty
le="->"), xytext=(-30, +70), textcoords='offset points')

cnt_log = np.log(counts)
plt.scatter(years, cnt_log, c= 200 * years, s=20 + 200 * gpu_counts/
gpu_counts.max(), alpha=0.5, label="Scatter Plot")
plt.legend(loc='upper left')
plt.grid()
plt.xlabel("Year")
plt.ylabel("Log Transistor Counts", fontsize=16)
plt.title("Moore's Law & Transistor Counts")
plt.show()

Refer to the following plot for the end result:
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Three-dimensional plots
Two-dimensional plots are the bread and butter of data visualization. However, if 
you want to show off, nothing beats a good three-dimensional plot. I was in charge 
of a software package that could draw contour plots and three-dimensional plots. 
The software could even draw plots that when viewed with special glasses would 
pop right in front of you.

The matplotlib API has the Axes3D class for three-dimensional plots. By demonstrating 
how this class works, we will also show how the object-oriented matplotlib API works. 
The matplotlib Figure class is a top-level container for chart elements:

1. Create a Figure object as follows:
fig = plt.figure()

2. Create an Axes3D object from the Figure object:
ax = Axes3D(fig)

3. The years and CPU transistor counts will be our x and y axes. It is required to 
create coordinate matrices from the years and CPU transistor counts arrays. 
Create the coordinate matrices with the NumPy meshgrid() function:
X, Y = np.meshgrid(X, Y)

4. Plot the data with the plot_surface() method of the Axes3D class:
ax.plot_surface(X, Y, Z)

5. The naming convention of the object-oriented API methods is to start with 
set_ and end with the procedural counterpart function name, as shown in 
the following code snippet:
ax.set_xlabel('Year')
ax.set_ylabel('Log CPU transistor counts')
ax.set_zlabel('Log GPU transistor counts')
ax.set_title("Moore's Law & Transistor Counts")

You can also have a look at the following code in the three_dimensional.py file in 
this book's code bundle:

from mpl_toolkits.mplot3d.axes3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

df = pd.read_csv('transcount.csv')
df = df.groupby('year').aggregate(np.mean)
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gpu = pd.read_csv('gpu_transcount.csv')
gpu = gpu.groupby('year').aggregate(np.mean)

df = pd.merge(df, gpu, how='outer', left_index=True, right_index=True)
df = df.replace(np.nan, 0)

fig = plt.figure()
ax = Axes3D(fig)
X = df.index.values
Y = np.log(df['trans_count'].values)
X, Y = np.meshgrid(X, Y)
Z = np.log(df['gpu_trans_count'].values)
ax.plot_surface(X, Y, Z)
ax.set_xlabel('Year')
ax.set_ylabel('Log CPU transistor counts')
ax.set_zlabel('Log GPU transistor counts')
ax.set_title("Moore's Law & Transistor Counts")
plt.show()

Refer to the following plot for the end result:
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Plotting in pandas
The plot() method in the pandas Series and DataFrame classes wraps around 
the related matplotlib functions. In its most basic form without any arguments, 
the plot() method displays the following plot for the dataset we have been using 
throughout this chapter:

To create a semi-log plot, add the logy parameter:

df.plot(logy=True)
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This results in the following plot for our data:

To create a scatter plot, specify the kind parameter to be scatter. We also need to 
specify two columns. Set the loglog parameter to True to produce a log-log graph 
(we need at least pandas 0.13.0 for this code):

df[df['gpu_trans_count'] > 0].plot(kind='scatter',  
x='trans_count', y='gpu_trans_count', loglog=True)
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Refer to the following plot for the end result:

The following program is in the pd_plotting.py file in this book's code bundle:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

df = pd.read_csv('transcount.csv')
df = df.groupby('year').aggregate(np.mean)

gpu = pd.read_csv('gpu_transcount.csv')
gpu = gpu.groupby('year').aggregate(np.mean)

df = pd.merge(df, gpu, how='outer', left_index=True,  
right_index=True)
df = df.replace(np.nan, 0)



Data Visualization

[ 158 ]

df.plot()
df.plot(logy=True)
df[df['gpu_trans_count'] > 0].plot(kind='scatter',  
x='trans_count', y='gpu_trans_count', loglog=True)
plt.show()

Lag plots
A lag plot is a scatter plot for a time series and the same data lagged. With such a 
plot, we can check whether there is a possible correlation between CPU transistor 
counts this year and the previous year, for instance. The lag_plot() pandas 
function in pandas.tools.plotting can draw a lag plot. Draw a lag plot with  
the default lag of 1 for the CPU transistor counts, as follows:

lag_plot(np.log(df['trans_count']))

Refer to the following plot for the end result:
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The following code for the lag plot example can also be found in the lag_plot.py 
file in this book's code bundle:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from pandas.tools.plotting import lag_plot

df = pd.read_csv('transcount.csv')
df = df.groupby('year').aggregate(np.mean)

gpu = pd.read_csv('gpu_transcount.csv')
gpu = gpu.groupby('year').aggregate(np.mean)

df = pd.merge(df, gpu, how='outer', left_index=True, right_index=True)
df = df.replace(np.nan, 0)
lag_plot(np.log(df['trans_count']))
plt.show()

Autocorrelation plots
Autocorrelation plots graph autocorrelations of time series data for different lags. 
Autocorrelation is the correlation of a time series with the same time series lagged. 
The autocorrelation_plot() pandas function in pandas.tools.plotting can 
draw an autocorrelation plot.

The following is the code from the autocorr_plot.py file in this book's code bundle:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from pandas.tools.plotting import autocorrelation_plot

df = pd.read_csv('transcount.csv')
df = df.groupby('year').aggregate(np.mean)

gpu = pd.read_csv('gpu_transcount.csv')
gpu = gpu.groupby('year').aggregate(np.mean)

df = pd.merge(df, gpu, how='outer', left_index=True, right_index=True)
df = df.replace(np.nan, 0)
autocorrelation_plot(np.log(df['trans_count']))
plt.show()
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Draw an autocorrelation plot for the CPU transistor counts as follows:

autocorrelation_plot(np.log(df['trans_count']))

Refer to the following plot for the end result. As we can see in the following plot, 
more recent values (smaller lags) are stronger correlated with the current value than 
older values (larger lags), and at extremely large lags, the correlation decays to 0:

Plot.ly
Plot.ly is a website currently in the beta stage, which provides online data 
visualization tools and a related Python library to be used on a user's machine. 
We can import and analyze data via the web interface or work entirely in a local 
environment and publish the end result on the Plot.ly website. Plots can be easily 
shared on the website within a team, allowing for collaboration, which is really  
the point of the website in the first place. In this section, we will give an example  
of how to plot a box plot with the Python API.
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A box plot is a special way of visualizing a dataset using quartiles. If we split a sorted 
dataset into four equal parts, the first quartile will be the largest value of the part 
with the smallest numbers. The second quartile will be the value in the middle of the 
dataset, which is also called the median. The third quartile will be the value in the 
middle between the median and the highest value. The bottom and the top of the box 
plot are formed by the first and third quartiles. The line through the box is the median. 
The whiskers on both ends of the box are usually the minimum and maximum of the 
dataset. At the end of this section, we will see an annotated box plot, which will clarify 
matters. Install the Plot.ly API with the following commands:

$ sudo pip install plotly

$ pip freeze|grep plotly

plotly==1.0.26

After installing the API, sign up to get an API key. The following code snippet signs 
you in after supplying a valid key:

api_key = getpass()

# Change the user to your own username
py.sign_in('username', api_key)

Create the box plots with the Plot.ly API as follows:

data = Data([Box(y=counts), Box(y=gpu_counts)]) 
plot_url = py.plot(data, filename='moore-law-scatter')

Please refer to the following code from the plot_ly.py file in this book's code bundle:

import plotly.plotly as py
from plotly.graph_objs import *
from getpass import getpass
import numpy as np
import pandas as pd

df = pd.read_csv('transcount.csv')
df = df.groupby('year').aggregate(np.mean)

gpu = pd.read_csv('gpu_transcount.csv')
gpu = gpu.groupby('year').aggregate(np.mean)
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df = pd.merge(df, gpu, how='outer', left_index=True, right_index=True)
df = df.replace(np.nan, 0)

api_key = getpass()

# Change the user to your own username
py.sign_in('username', api_key)

counts = np.log(df['trans_count'].values)
gpu_counts = np.log(df['gpu_trans_count'].values)

data = Data([Box(y=counts), Box(y=gpu_counts)]) 
plot_url = py.plot(data, filename='moore-law-scatter')
print plot_url

Also, refer to the following plot for the end result:
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Summary
In this chapter, we discussed visualizing data with Python by plotting. We used 
matplotlib, pandas, and Plot.ly. We covered box plots, scatter plots, bubble charts, 
logarithmic plots, autocorrelation plots, lag plots, three-dimensional plots, legends, 
and annotations.

Logarithmic plots (or log plots) are plots that use a logarithmic scale. The semi-log plots 
use linear scaling on one axis and logarithmic scaling on the other axis. Scatter plots 
plot two variables against each other. A bubble chart is a special type of scatter plot. In 
a bubble chart, the value of a third variable is relatively represented by the size of the 
bubble surrounding a data point. Autocorrelation plots graph autocorrelations of time 
series data for different lags. A box plot visualizes data based on the data's quartiles.

The next chapter, Chapter 7, Signal Processing and Time Series is about a special type  
of data: time series. Time series are ordered data points that have been timestamped. 
A lot of the physical world data that we measure is in the form of a time series and 
can be considered a signal, for instance, sound, light, or electrical signals. You will 
learn how to filter signals and model time series.





Signal Processing  
and Time Series

Signal processing is a field of engineering and applied mathematics that analyzes 
analog and digital signals, corresponding to variables that vary with time. One of  
the categories of signal processing techniques is time series analysis. A time series  
is an ordered list of data points starting with the oldest measurements first. The data 
points are usually equidistant, for instance, consistent with daily or annual sampling. 
In time series analysis, the order of the values is important. It's common to try to 
derive a relation between a value and another data point or combination of data 
points a fixed number of periods in the past, in the same time series.

The time series examples in this chapter use annual sunspot cycles data. This data is 
provided by the statsmodels package (an open source Python project). The examples 
use NumPy/SciPy, pandas, and also statsmodels.

We will cover the following topics in this chapter:

• Moving averages
• Window functions
• Cointegration
• Autocorrelation
• Autoregressive models
• ARMA models
• Generating periodic signals
• Fourier analysis
• Spectral analysis
• Filtering
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statsmodels subpackages
To install statsmodels, execute the following command:

$ pip install statsmodels

$ pip freeze|grep stat

statsmodels==0.6.0

Open the pkg_check.py file provided in the code bundle, and change the code to  
list the statsmodels subpackages to get the following result:

statmodels version 0.6.0.dev-3303360

statsmodels.base 

statsmodels.compatnp 

statsmodels.datasets 

statsmodels.discrete 

statsmodels.distributions 

statsmodels.emplike 

statsmodels.formula 

statsmodels.genmod 

statsmodels.graphics 

statsmodels.interface 

statsmodels.iolib 

statsmodels.miscmodels 

statsmodels.nonparametric DESCRIPTION For an overview of this module,  
see docs/source/nonparametric.rst PACKAGE CONTENTS _kernel_base  
_smoothers_lowess api bandwidths

statsmodels.regression 

statsmodels.resampling 

statsmodels.robust 

statsmodels.sandbox 

statsmodels.stats 

statsmodels.tests 

statsmodels.tools 

statsmodels.tsa 
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Moving averages
Moving averages are frequently used to analyze time series. A moving average 
specifies a window of data that is previously seen, which is averaged each time  
the window slides forward by one period:

( )1 1m m m na a a
SMA

n
− − −+ + ⋅⋅⋅ +

=

The different types of moving averages differ essentially in the weights used 
for averaging. The exponential moving average, for instance, has exponentially 
decreasing weights with time:

( )1 1n n n nEMA EMA p EMAα− −= + −

This means that older values have less influence than newer values, which is 
sometimes desirable.

The following code from the moving_average.py file in this book's code bundle 
plots the simple moving average for the 11- and 22-year sunspots cycles:

import matplotlib.pyplot as plt
import statsmodels.api as sm
from pandas.stats.moments import rolling_mean

data_loader = sm.datasets.sunspots.load_pandas()
df = data_loader.data
year_range = df["YEAR"].values
plt.plot(year_range, df["SUNACTIVITY"].values, label="Original")
plt.plot(year_range, rolling_mean(df, 11)["SUNACTIVITY"].values,  
label="SMA 11")
plt.plot(year_range, rolling_mean(df, 22)["SUNACTIVITY"].values,  
label="SMA 22")
plt.legend()
plt.show()

We can express an exponential decreasing weight strategy for the exponential 
moving average, as shown in the following NumPy code:

weights = np.exp(np.linspace(-1., 0., N))
weights /= weights.sum()
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A simple moving average uses equal weights, which in code looks as follows:

def sma(arr, n):
   weights = np.ones(n) / n

   return np.convolve(weights, arr)[n-1:-n+1] 

Since we can load the data into a pandas DataFrame, it is more convenient to use  
the pandas rolling_mean() function. Load the data as follows using statsmodels:

data_loader = sm.datasets.sunspots.load_pandas()
df = data_loader.data

Refer to the following plot for the end result:

Window functions
NumPy has a number of window routines that can compute weights in a rolling 
window as we did in the previous section.

A window function is a function that is defined within an interval (the window)  
or is otherwise zero valued. We can use window functions for spectral analysis and 
filter design (for more background information, refer to http://en.wikipedia.org/ 
wiki/Window_function). The boxcar window is a rectangular window with the 
following formula:

w(n) = 1

http://en.wikipedia.org/ wiki/Window_function
http://en.wikipedia.org/ wiki/Window_function
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The triangular window is shaped like a triangle and has the following formula:

( )
1

21 | |

2

Nn
w n L

−
−

= −

In the preceding formula, L can be equal to N, N+1, or N-1. In the last case, the window 
function is called the Bartlett window. The Blackman window is bell shaped and 
defined as follows:

( ) 0 1 2
2 4cos cos
1 1
n nw n a a a

N N
π π   = − +   − −   

0 1 2
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2 2 2

a a aα α−
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The Hanning window is also bell shaped and defined as follows:

( ) 20.5 1 cos
1
nw n

N
π  = −   −  

In the pandas API, the rolling_window() function provides the same functionality 
with different values of the win_type string parameter corresponding to different 
window functions. The other parameter is the size of the window, which will be  
set to 22 for the middle cycle of the sunspots data (according to research, there are 
three cycles of 11, 22, and 100 years). The code is straightforward and given in the 
window_functions.py file in this book's code bundle (the data here is limited to  
the last 150 years only for easier comparison in the plots):

import matplotlib.pyplot as plt
import statsmodels.api as sm
from pandas.stats.moments import rolling_window
import pandas as pd

data_loader = sm.datasets.sunspots.load_pandas()
df = data_loader.data.tail(150)
df = pd.DataFrame({'SUNACTIVITY':df['SUNACTIVITY'].values}, 
index=df['YEAR'])
ax = df.plot()

def plot_window(win_type):
    df2 = rolling_window(df, 22, win_type)
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    df2.columns = [win_type]
    df2.plot(ax=ax)

plot_window('boxcar')
plot_window('triang')
plot_window('blackman')
plot_window('hanning')
plot_window('bartlett')
plt.show()

Refer to the following plot for the end result:

Defining cointegration
Cointegration is similar to correlation but is viewed by many as a superior metric 
to define the relatedness of two time series. Two time series x(t) and y(t) are 
cointegrated if a linear combination of them is stationary. In such a case, the 
following equation should be stationary:

y(t) – a x(t)
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Consider a drunk man and his dog out on a walk. Correlation tells us whether they 
are going in the same direction. Cointegration tells us something about the distance 
over time between the man and his dog. We will show cointegration using randomly 
generated time series and real data. The Augmented Dickey-Fuller (ADF) test (see 
http://en.wikipedia.org/wiki/Augmented_Dickey%E2%80%93Fuller_test) 
tests for a unit root in a time series and can be used to determine the cointegration  
of time series.

For the following code, have a look at the cointegration.py file in this book's  
code bundle:

import statsmodels.api as sm
from pandas.stats.moments import rolling_window
import pandas as pd
import statsmodels.tsa.stattools as ts
import numpy as np

def calc_adf(x, y):
    result = sm.OLS(x, y).fit()    
    return ts.adfuller(result.resid)

data_loader = sm.datasets.sunspots.load_pandas()
data = data_loader.data.values
N = len(data)

t = np.linspace(-2 * np.pi, 2 * np.pi, N)
sine = np.sin(np.sin(t))
print "Self ADF", calc_adf(sine, sine)

noise = np.random.normal(0, .01, N)
print "ADF sine with noise", calc_adf(sine, sine + noise)

cosine = 100 * np.cos(t) + 10
print "ADF sine vs cosine with noise", calc_adf(sine, cosine +  
noise)

print "Sine vs sunspots", calc_adf(sine, data)

Let's get started with the cointegration demo:

1. Define the following function to calculate the ADF statistic:
def calc_adf(x, y):
    result = stat.OLS(x, y).fit()    
    return ts.adfuller(result.resid)

http://en.wikipedia.org/wiki/Augmented_Dickey%E2%80%93Fuller_test


Signal Processing and Time Series

[ 172 ]

2. Load the sunspots data into a NumPy array:
data_loader = sm.datasets.sunspots.load_pandas()
data = data_loader.data.values
N = len(data)

3. Generate a sine and calculate the cointegration of the sine with itself:
t = np.linspace(-2 * np.pi, 2 * np.pi, N)
sine = np.sin(np.sin(t))
print "Self ADF", calc_adf(sine, sine)

The code should print the following:
Self ADF (-5.0383000037165746e-16, 0.95853208606005591, 0,  
308, {'5%': -2.8709700936076912, '1%': -3.4517611601803702,  
'10%': -2.5717944160060719}, -21533.113655477719)

The first value in the printout is the ADF metric and the second value is the 
p-value. As you can see, the p-value is very high. The following values are 
the lag and sample size. The dictionary at the end gives the t-distribution 
values for this exact sample size.

4. Now, add noise to the sine to demonstrate how noise will influence the signal:
noise = np.random.normal(0, .01, N)
print "ADF sine with noise", calc_adf(sine, sine + noise)

With the noise, we get the following results:
ADF sine with noise (-7.4535502402193075,  
5.5885761455106898e-11, 3, 305, {'5%': -2.8710633193086648,  
'1%': -3.4519735736206991, '10%': -2.5718441306100512}, - 
1855.0243977703672)

The p-value has gone down considerably. The ADF metric -7.45 here 
is lower than all the critical values in the dictionary. All these are strong 
arguments to reject cointegration.

5. Let's generate a cosine of a larger magnitude and offset. Again, let's add  
noise to it:
cosine = 100 * np.cos(t) + 10
print "ADF sine vs cosine with noise", calc_adf(sine,  
cosine + noise)

The following values get printed:
ADF sine vs cosine with noise (-17.927224617871534,  
2.8918612252729532e-30, 16, 292, {'5%': -2.8714895534256861,  
'1%': -3.4529449243622383, '10%': -2.5720714378870331}, - 
11017.837238220782)
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Similarly, we have strong arguments to reject cointegration. Checking for 
cointegration between the sine and sunspots gives the following output:

Sine vs sunspots (-6.7242691810701016, 3.4210811915549028e-09, 16,  
292, {'5%': -2.8714895534256861, '1%': -3.4529449243622383, '10%': - 
2.5720714378870331}, -1102.5867415291168)

The confidence levels are roughly the same for the pairs used here because they are 
dependent on the number of data points, which don't vary much. The outcome is 
summarized in the following table:

Pair Statistic p-value 5% 1% 10% Reject

Sine with self -5.03E-16 0.95 -2.87 -3.45 -2.57 No

Sine versus sine 
with noise

-7.45 5.58E-11 -2.87 -3.45 -2.57 Yes

Sine versus cosine 
with noise

-17.92 2.89E-30 -2.87 -3.45 -2.57 Yes

Sine versus 
sunspots

-6.72 3.42E-09 -2.87 -3.45 -2.57 Yes

Autocorrelation
Autocorrelation is correlation within a dataset and can indicate a trend.

For a given time series, with known mean and standard deviations, 
we can define the autocorrelation for times s and t using the 
expected value operator as follows:

( )( )t t s s

t s

E x xµ µ
σ σ

− −  

This is, in essence, the formula for correlation applied to a time series 
and the same time series lagged.

For example, if we have a lag of one period, we can check if the previous value 
influences the current value. For that to be true, the autocorrelation value has to  
be pretty high.
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In the previous chapter, Chapter 6, Data Visualization, we already used a pandas 
function that plots autocorrelation. In this example, we will use the NumPy 
correlate() function to calculate the actual autocorrelation values for the 
sunspots cycle. At the end, we need to normalize the values we receive.  
Apply the NumPy correlate() function as follows:

y = data - np.mean(data)
norm = np.sum(y ** 2)
correlated = np.correlate(y, y, mode='full')/norm

We are also interested in the indices corresponding to the highest correlations.  
These indices can be found with the NumPy argsort() function, which returns  
the indices that would sort an array:

print np.argsort(res)[-5:]

These are the indices found for the largest autocorrelations:

[ 9 11 10  1  0] 

The largest autocorrelation is by definition for zero lag, that is, the correlation  
of a signal with itself. The next largest values are for a lag of one and ten years. 
Check the autocorrelation.py file in this book's code bundle:

import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt
from pandas.tools.plotting import autocorrelation_plot

data_loader = sm.datasets.sunspots.load_pandas()
data = data_loader.data["SUNACTIVITY"].values
y = data - np.mean(data)
norm = np.sum(y ** 2)
correlated = np.correlate(y, y, mode='full')/norm
res = correlated[len(correlated)/2:]

print np.argsort(res)[-5:]
plt.plot(res)
plt.grid(True)
plt.xlabel("Lag")
plt.ylabel("Autocorrelation")
plt.show()
autocorrelation_plot(data)
plt.show()
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Refer to the following plot for the end result:

Compare the previous plot with the plot produced by pandas:
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Autoregressive models
An autoregressive model can be used to represent a time series with the goal of 
forecasting future values. In such a model, a variable is assumed to depend on its 
previous values. The relation is also assumed to be linear and we are required to  
fit the data in order to find the parameters of the data.

The mathematical formula for the autoregressive 
model is as follows:

1

p

t i t i t
i

x c a x −
=

= + +∈∑
In the preceding formula, c is a constant and the 
last term is a random component also known as 
white noise.

This presents us with the very common problem of linear regression. For practical 
reasons, it's important to keep the model simple and only involve necessary lagged 
components. In machine learning jargon, these are called features. For regression 
problems, the Python machine learning scikit-learn library is a good, if not the  
best, choice. We will work with this API in Chapter 10, Predictive Analytics and 
Machine Learning.

In regression setups, we frequently encounter the problem of overfitting—this issue 
arises when we have a perfect fit for a sample, which performs poorly when we 
introduce new data points. The standard solution is to apply cross-validation (or use 
algorithms that avoid overfitting). In this method, we estimate model parameters on a 
part of the sample. The rest of the data is used to test and evaluate the model. This is 
actually a simplified explanation. There are more complex cross-validation schemes, 
a lot of which are supported by scikit-learn. To evaluate the model, we can compute 
appropriate evaluation metrics. As you can imagine, there are many metrics, and these 
metrics can have varying definitions due to constant tweaking by practitioners. We can 
look up these definitions in books or Wikipedia. The important thing to remember is 
that the evaluation of a forecast or fit is not an exact science. The fact that there are so 
many metrics only confirms that.
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We will set up the model with the scipy.optimize.leastsq() function using 
the first two lagged components we found in the previous section. We could have 
chosen a linear algebra function instead. However, the leastsq() function is more 
flexible and lets us specify practically any type of model. Set up the model as follows:

def model(p, x1, x10):
   p1, p10 = p
   return p1 * x1 + p10 * x10

def error(p, data, x1, x10):
   return data - model(p, x1, x10)

To fit the model, initialize the parameter list and pass it to the leastsq() function  
as follows:

def fit(data):
   p0 = [.5, 0.5]
   params = leastsq(error, p0, args=(data[10:], data[9:-1], data[:-
10]))[0]
   return params

Train the model on a part of the data:

cutoff = .9 * len(sunspots)
params = fit(sunspots[:cutoff])
print "Params", params

The following are the parameters we get:

Params [ 0.67172672  0.33626295]

With these parameters, we will plot predicted values and compute various metrics. 
The following are the values we obtain for the metrics:

Root mean square error 22.8148122613

Mean absolute error 17.6515446503

Mean absolute percentage error 60.7817800736

Symmetric Mean absolute percentage error 34.9843386176

Coefficient of determination 0.799940292779
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Refer to the following graph for the end result:

It seems that we have many predictions that are almost spot-on, but also a bunch  
of predictions that are pretty far off. Overall, we don't have a perfect fit; however,  
it's not a complete disaster. It's somewhere in the middle.

The following code is in the ar.py file in this book's code bundle:

from scipy.optimize import leastsq
import statsmodels.api as sm
import matplotlib.pyplot as plt
import numpy as np

def model(p, x1, x10):
   p1, p10 = p
   return p1 * x1 + p10 * x10

def error(p, data, x1, x10):
   return data - model(p, x1, x10)

def fit(data):
   p0 = [.5, 0.5]



Chapter 7

[ 179 ]

   params = leastsq(error, p0, args=(data[10:], data[9:-1],  
data[:-10]))[0]
   return params

data_loader = sm.datasets.sunspots.load_pandas()
sunspots = data_loader.data["SUNACTIVITY"].values

cutoff = .9 * len(sunspots)
params = fit(sunspots[:cutoff])
print "Params", params

pred = params[0] * sunspots[cutoff-1:-1] + params[1] *  
sunspots[cutoff-10:-10]
actual = sunspots[cutoff:]
print "Root mean square error", np.sqrt(np.mean((actual - pred) **  
2))
print "Mean absolute error", np.mean(np.abs(actual - pred))
print "Mean absolute percentage error", 100 *  
np.mean(np.abs(actual - pred)/actual)
mid = (actual + pred)/2
print "Symmetric Mean absolute percentage error", 100 *  
np.mean(np.abs(actual - pred)/mid)
print "Coefficient of determination", 1 - ((actual - pred) **  
2).sum()/ ((actual - actual.mean()) ** 2).sum()
year_range = data_loader.data["YEAR"].values[cutoff:]
plt.plot(year_range, actual, 'o', label="Sunspots")
plt.plot(year_range, pred, 'x', label="Prediction")
plt.grid(True)
plt.xlabel("YEAR")
plt.ylabel("SUNACTIVITY")
plt.legend()
plt.show()

ARMA models
ARMA models are often used to forecast a time series. These models combine 
autoregressive and moving average models (see http://en.wikipedia.org/wiki/
Autoregressive%E2%80%93moving-average_model). In moving average models, 
we assume that a variable is the sum of the mean of the time series and a linear 
combination of noise components.

http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
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The autoregressive and moving average models can have 
different orders. In general, we can define an ARMA model 
with p autoregressive terms and q moving average terms  
as follows:

1 1

p q
t i t i i t i ti i
x c a x bε− −= =
= + + +∈∑ ∑

In the preceding formula, just like in the autoregressive 
model formula, we have a constant and a white noise 
component; however, we try to fit the lagged noise 
components as well.

Fortunately, it's possible to use the statsmodelssm.tsa.ARMA() routine for this 
analysis. Fit the data to an ARMA(10,1) model as follows:

model = sm.tsa.ARMA(df, (10,1)).fit()

Perform a forecast (statsmodels uses strings a lot):

prediction = model.predict('1975', str(years[-1]), dynamic=True)

Refer to the following plot for the end result:
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The fit is poor because frankly, we overfit the data. The simpler model in the 
previous section worked much better. The example code can be found in the  
arma.py file in this book's code bundle:

import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
import datetime

data_loader = sm.datasets.sunspots.load_pandas()
df = data_loader.data
years = df["YEAR"].values.astype(int)
df.index = pd.Index(sm.tsa.datetools.dates_from_range(str(years[0]),  
str(years[-1])))
del df["YEAR"]

model = sm.tsa.ARMA(df, (10,1)).fit()
prediction = model.predict('1975', str(years[-1]), dynamic=True)

df['1975':].plot()
prediction.plot(style='--', label='Prediction')
plt.legend()
plt.show()

Generating periodic signals
Many natural phenomena are regular and trustworthy like an accurate clock.  
Some phenomena exhibit patterns that seem regular. A group of scientists found 
three cycles in the sunspot activity with the Hilbert-Huang transform (see http://
en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform). The cycles have 
a duration of 11, 22, and 100 years approximately. Normally, we would simulate a 
periodic signal using trigonometric functions such as a sine function. You probably 
remember a bit of trigonometry from high school. That's all we need for this example. 
Since we have three cycles, it seems reasonable to create a model, which is a linear 
combination of three sine functions. This just requires a tiny adjustment of the code for 
the autoregressive model. Refer to the periodic.py file in this book's code bundle for 
the following code:

from scipy.optimize import leastsq
import statsmodels.api as sm
import matplotlib.pyplot as plt
import numpy as np

http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
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def model(p, t):
   C, p1, f1, phi1 , p2, f2, phi2, p3, f3, phi3 = p
   return C + p1 * np.sin(f1 * t + phi1) + p2 * np.sin(f2 * t +  
phi2) +p3 * np.sin(f3 * t + phi3)

def error(p, y, t):
   return y - model(p, t)

def fit(y, t):
   p0 = [y.mean(), 0, 2 * np.pi/11, 0, 0, 2 * np.pi/22, 0, 0, 2 *  
np.pi/100, 0]
   params = leastsq(error, p0, args=(y, t))[0]
   return params

data_loader = sm.datasets.sunspots.load_pandas()
sunspots = data_loader.data["SUNACTIVITY"].values
years = data_loader.data["YEAR"].values

cutoff = .9 * len(sunspots)
params = fit(sunspots[:cutoff], years[:cutoff])
print "Params", params

pred = model(params, years[cutoff:])
actual = sunspots[cutoff:]
print "Root mean square error", np.sqrt(np.mean((actual - pred) **  
2))
print "Mean absolute error", np.mean(np.abs(actual - pred))
print "Mean absolute percentage error", 100 *  
np.mean(np.abs(actual - pred)/actual)
mid = (actual + pred)/2
print "Symmetric Mean absolute percentage error", 100 *  
np.mean(np.abs(actual - pred)/mid)
print "Coefficient of determination", 1 - ((actual - pred) **  
2).sum()/ ((actual - actual.mean()) ** 2).sum()
year_range = data_loader.data["YEAR"].values[cutoff:]
plt.plot(year_range, actual, 'o', label="Sunspots")
plt.plot(year_range, pred, 'x', label="Prediction")
plt.grid(True)
plt.xlabel("YEAR")
plt.ylabel("SUNACTIVITY")
plt.legend()
plt.show()
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We get the following output:

Params [ 47.18800285  28.89947419   0.56827284   6.51168446    
4.55214999

   0.29372077 -14.30926648 -18.16524041   0.06574835  -4.37789602]

Root mean square error 59.5619175499

Mean absolute error 44.5814573306

Mean absolute percentage error 65.1639657495

Symmetric Mean absolute percentage error 78.4477263927

Coefficient of determination -0.363525210982

The first line displays the coefficients of the model we attempted. We have a mean 
absolute error of 44, which means that we are off by that amount in either direction 
on average. We also want the coefficient of determination to be as close to one as 
possible to have a good fit. Instead, we get a negative value, which is undesirable. 
Refer to the following graph for the end result:
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Fourier analysis
Fourier analysis is based on the Fourier series named after the mathematician 
Joseph Fourier. The Fourier series is a mathematical method used to represent 
functions as an infinite series of sine and cosine terms. The functions in question  
can be real or complex valued:

[ ] i t
t

t e ωχ∞ −
=−∞∑

The most efficient algorithm for Fourier analysis is the Fast Fourier Transform (FFT). 
This algorithm is implemented in SciPy and NumPy. When applied to the time series 
data, the Fourier analysis transforms maps onto the frequency domain, producing a 
frequency spectrum. The frequency spectrum displays harmonics as distinct spikes 
at certain frequencies. Music, for example, is composed from different frequencies 
with the note A at 440 Hz. The note A can be produced by a pitch fork. We can 
produce this and other notes with musical instruments such as a piano. White noise 
is a signal consisting of many frequencies, which are represented equally. White  
light is a mix of all the visible frequencies of light, also represented equally.

In the following example, we will import two functions (refer to fourier.py):

from scipy.fftpack import rfft
from scipy.fftpack import fftshift

The rfft() function performs FFT on real-valued data. We could also have used the 
fft() function, but it gives a warning on this particular dataset. The fftshift() 
function shifts the zero-frequency component (the mean of the data) to the middle 
of the spectrum, for better visualization. We will also have a look at a sine wave 
because that is easy to understand. Create a sine wave and apply the FFT to it:

t = np.linspace(-2 * np.pi, 2 * np.pi, len(sunspots))
mid = np.ptp(sunspots)/2
sine = mid + mid * np.sin(np.sin(t))

sine_fft = np.abs(fftshift(rfft(sine)))
print "Index of max sine FFT", np.argsort(sine_fft)[-5:]

The following is the output that shows the indices corresponding to  
maximum amplitudes:

Index of max sine FFT [160 157 166 158 154]
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Perform FFT on the sunspots data:

transformed = np.abs(fftshift(rfft(sunspots)))
print "Indices of max sunspots FFT", np.argsort(transformed)[-5:]

The five largest peaks in the spectrum can be found at the following indices:

Indices of max sunspots FFT [205 212 215 209 154]

The largest peak is situated at 154 too. Refer to the following plot for the end result:

The complete code is located in the fourier.py file in this book's code bundle:

import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
from scipy.fftpack import rfft
from scipy.fftpack import fftshift

data_loader = sm.datasets.sunspots.load_pandas()
sunspots = data_loader.data["SUNACTIVITY"].values

t = np.linspace(-2 * np.pi, 2 * np.pi, len(sunspots))
mid = np.ptp(sunspots)/2
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sine = mid + mid * np.sin(np.sin(t))

sine_fft = np.abs(fftshift(rfft(sine)))
print "Index of max sine FFT", np.argsort(sine_fft)[-5:]

transformed = np.abs(fftshift(rfft(sunspots)))
print "Indices of max sunspots FFT", np.argsort(transformed)[-5:]

plt.subplot(311)
plt.plot(sunspots, label="Sunspots")
plt.plot(sine, lw=2, label="Sine")
plt.grid(True)
plt.legend()
plt.subplot(312)
plt.plot(transformed, label="Transformed Sunspots")
plt.grid(True)
plt.legend()
plt.subplot(313)
plt.plot(sine_fft, lw=2, label="Transformed Sine")
plt.grid(True)
plt.legend()
plt.show()

Spectral analysis
In the previous section, we charted the amplitude spectrum of the dataset.  
The power spectrum of a physical signal visualizes the energy distribution  
of the signal. We can modify the code easily to plot the power spectrum,  
just by squaring the values as follows:

plt.plot(transformed ** 2, label="Power Spectrum")

The phase spectrum visualizes the phase (the initial angle of a sine function)  
and can be plotted as follows:

plt.plot(np.angle(transformed), label="Phase Spectrum")
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Refer to the following graph for the end result:

Please refer to the spectrum.py file in this book's code bundle for the complete code.

Filtering
Filtering is a type of signal processing, which involves removing or suppressing a 
part of the signal. After applying FFT, we can filter high or low frequencies, or we 
can try to remove the white noise. White noise is a random signal with a constant 
power spectrum and as such doesn't contain any useful information. The scipy.
signal package has a number of utilities for filtering. In this example, we will 
demonstrate a small sample of these routines:

• The median filter calculates the median in a rolling window  
(see http://en.wikipedia.org/wiki/Median_filter). It's implemented 
by the medfilt() function, which has an optional window size parameter.

• The Wiener filter removes noise using statistics (see http://en.wikipedia.
org/wiki/Wiener_filter). For a filter g(t) and signal s(t), the output  
is calculated with the convolution (g * [s + n])(t). It's implemented  
by the wiener() function. This function also has an optional window  
size parameter.

http://en.wikipedia.org/wiki/Median_filter
http://en.wikipedia.org/wiki/Wiener_filter
http://en.wikipedia.org/wiki/Wiener_filter
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• The detrend filter removes a trend. This can be a linear or constant trend.  
It's implemented by the detrend() function.

Please refer to the filtering.py file in this book's code bundle for the following code:

import statsmodels.api as sm
import matplotlib.pyplot as plt
from scipy.signal import medfilt
from scipy.signal import wiener
from scipy.signal import detrend

data_loader = sm.datasets.sunspots.load_pandas()
sunspots = data_loader.data["SUNACTIVITY"].values
years = data_loader.data["YEAR"].values

plt.plot(years, sunspots, label="SUNACTIVITY")
plt.plot(years, medfilt(sunspots, 11), lw=2, label="Median")
plt.plot(years, wiener(sunspots, 11), '--', lw=2, label="Wiener")
plt.plot(years, detrend(sunspots), lw=3, label="Detrend")
plt.xlabel("YEAR")
plt.grid(True)
plt.legend()
plt.show()

Refer to the following graph for the end result:



Chapter 7

[ 189 ]

Summary
In this chapter, the time series examples used annual sunspot cycles data.

You learned that it's common to try to derive a relationship between a value and 
another data point or combination of data points a fixed number of periods in the 
past, in the same time series.

A moving average specifies a window of previously seen data, which is averaged 
each time the window slides forward by one period. In the pandas API, the rolling_
window() function provides the window functions functionality with different values 
of the win_type string parameter corresponding to different window functions.

Cointegration is similar to correlation and is a metric to define the relatedness of two 
time series. In regression setups, we frequently encounter the problem of overfitting. 
This issue arises when we have a perfect fit for a sample, which performs poorly when 
we introduce new data points. To evaluate a model, we can compute appropriate 
evaluation metrics.

Databases are an important tool for data analysis. Relational databases have been 
around since the 1970s. Recently, NoSQL databases have become a viable alternative. 
The next chapter, Chapter 8, Working with Databases, contains information about the 
various databases (relational and NoSQL) and related APIs.





Working with Databases
If you work with data, sooner or later, you will come into contact with databases. 
This chapter introduces various databases (relational and NoSQL) and related APIs. 
A relational database is a database that has a collection of tables containing data 
organized by the relations between data items. A relationship can be set up between 
each row in the table and a row in another table. A relational database does not just 
pertain to relationships between tables; firstly, it has to do with the relationship 
between columns inside a table (obviously, columns within a table have to be related, 
for instance, a name column and an address column in a customer table); secondly,  
it relates to connections between tables.

NoSQL (Not Only SQL) databases are undergoing substantial growth in Big Data 
and web applications. NoSQL systems may in fact permit SQL-like query languages 
to be employed. The main theme of NoSQL databases is allowing data to be stored 
in a more flexible manner than the relational model permits. This may mean not 
having a database schema or a flexible database schema. Of course, the flexibility 
and speed may come at a price such as limited support for consistent transactions. 
NoSQL databases can store data using a dictionary style, in a column-oriented way, 
as documents, objects, graphs, tuples, or a combination thereof. The topics of this 
chapter are listed as follows:

• Lightweight access with sqlite3
• Accessing databases from pandas
• Installing and setting up SQLAlchemy
• Populating a database with SQLAlchemy
• Querying the database with SQLAlchemy
• Pony ORM
• Dataset—databases for lazy people
• PyMongo and MongoDB
• Storing data in Redis
• Apache Cassandra
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Lightweight access with sqlite3
SQLite is a very popular relational database. It's very lightweight and used by many 
applications, for instance, web browsers such as Mozilla Firefox. The sqlite3 module 
in the standard Python distribution can be used to work with a SQLite database. With 
sqlite3, we can either store the database in a file or keep it in RAM. For this example, 
we will do the latter. Import sqlite3 as follows:

import sqlite3

A connection to the database is needed to proceed. If we wanted to store the database 
in a file, we would provide a filename. Instead, do the following:

with sqlite3.connect(":memory:") as con:

The with statement is standard Python and relies on the presence of a __exit__() 
method in a special context manager class. With this statement, we don't need to 
explicitly close the connection. The closing of the connection is done automatically 
by the context manager. After connecting to a database, we need a cursor. That's 
generally how it works with databases by the way. A database cursor is similar to a 
cursor in a text editor, in concept at least. We are required to close the cursor as well. 
Create the cursor as follows:

c = con.cursor()

We can now immediately create a table. Usually, you have to create a database first or 
have it created for you by a database specialist. In this chapter, you not only need to 
know Python, but SQL too. SQL is a specialized language for database querying and 
manipulating. We don't have enough space to describe SQL completely. However, 
basic SQL should be easy for you to pick up (for example, go through http://www.
w3schools.com/sql/). To create a table, we pass a SQL string to the cursor as follows:

c.execute('''CREATE TABLE sensors
                 (date text, city text, code text, sensor_id real,  
temperature real)''')

This should create a table with several columns called sensors. In this string, text 
and real are data types corresponding to string and numerical values. We could 
trust the table creation to have worked properly. If something goes wrong, we will 
get an error. Listing the tables in a database is database dependent. There is usually 
a special table or set of tables containing metadata about user tables. List the SQLite 
tables as follows:

for table in c.execute("SELECT name FROM sqlite_master WHERE type  
= 'table'"):
        print "Table", table[0]

http://www.w3schools.com/sql/
http://www.w3schools.com/sql/
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As expected, we get the following output:

Table sensors

Let's insert and query some random data as follows:

c.execute("INSERT INTO sensors VALUES ('2016-11- 
05','Utrecht','Red',42,15.14)")
c.execute("SELECT * FROM sensors")
print c.fetchone()

The record we inserted should be printed as follows:

(u'2016-11-05', u'Utrecht', u'Red', 42.0, 15.14)

When we don't need a table anymore, we can drop it. This is dangerous, so you have 
to be absolutely sure you don't need the table. Once a table is dropped, it cannot be 
recovered unless it was backed up. Drop the table and show the number of tables 
after dropping it as follows:

con.execute("DROP TABLE sensors")

print "# of tables", c.execute("SELECT COUNT(*) FROM sqlite_master  
WHERE type = 'table'").fetchone()[0]

We get the following output:

# of tables 0

Refer to the sqlite_demo.py file in this book's code bundle for the following code:

import sqlite3

with sqlite3.connect(":memory:") as con:
    c = con.cursor()
    c.execute('''CREATE TABLE sensors
                 (date text, city text, code text, sensor_id real,  
temperature real)''')

    for table in c.execute("SELECT name FROM sqlite_master WHERE  
type = 'table'"):
        print "Table", table[0]

    c.execute("INSERT INTO sensors VALUES ('2016-11- 
05','Utrecht','Red',42,15.14)")
    c.execute("SELECT * FROM sensors")
    print c.fetchone()
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    con.execute("DROP TABLE sensors")

    print "# of tables", c.execute("SELECT COUNT(*) FROM  
sqlite_master WHERE type = 'table'").fetchone()[0]

    c.close()

Accessing databases from pandas
We can give pandas a database connection such as the one in the previous example 
or a SQLAlchemy connection. We will cover the latter in the later sections of this 
chapter. We will load the statsmodels sunactivity data, just like in the previous 
chapter, Chapter 7, Signal Processing and Time Series:

1. Create a list of tuples to form the pandas DataFrame:
rows = [tuple(x) for x in df.values]

Contrary to the previous example, create a table without specifying data types:

con.execute("CREATE TABLE sunspots(year, sunactivity)")

2. The executemany() method executes multiple statements; in this case,  
we will be inserting records from a list of tuples. Insert all the rows into  
the table and show the row count as follows:
con.executemany("INSERT INTO sunspots(year, sunactivity)  
VALUES (?, ?)", rows)
c.execute("SELECT COUNT(*) FROM sunspots")
print c.fetchone()

The number of rows in the table is printed as follows:
(309,)

3. The rowcount attribute of the result of an execute() call gives the number 
of affected rows. This attribute is somewhat quirky and depends on your 
SQLite version. A SQL query, as shown in the previous code snippet, on the 
other hand is unambiguous. Delete the records where the number of events 
is more than 20:
print "Deleted", con.execute("DELETE FROM sunspots where  
sunactivity > 20").rowcount, "rows"

The following should be printed:
Deleted 217 rows
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4. If we hand the database connection to pandas, we can execute a query and 
return a pandas DataFrame with the read_sql() function. Select the records 
until 1732 as follows:
print read_sql("SELECT * FROM sunspots where year < 1732",  
con)

The end result is the following pandas DataFrame:
    year  sunactivity

0   1700            5

1   1701           11

2   1702           16

3   1707           20

4   1708           10

5   1709            8

6   1710            3

7   1711            0

8   1712            0

9   1713            2

10  1714           11

11  1723           11

[12 rows x 2 columns]

Refer to the panda_access.py file in this book's code bundle for the following code:

import statsmodels.api as sm
from pandas.io.sql import read_sql
import sqlite3

with sqlite3.connect(":memory:") as con:
    c = con.cursor()

    data_loader = sm.datasets.sunspots.load_pandas()
    df = data_loader.data
    rows = [tuple(x) for x in df.values]

    con.execute("CREATE TABLE sunspots(year, sunactivity)")
    con.executemany("INSERT INTO sunspots(year, sunactivity)  
VALUES (?, ?)", rows)
    c.execute("SELECT COUNT(*) FROM sunspots")
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    print c.fetchone()
    print "Deleted", con.execute("DELETE FROM sunspots where  
sunactivity > 20").rowcount, "rows"

    print read_sql("SELECT * FROM sunspots where year < 1732",  
con)
    con.execute("DROP TABLE sunspots")

    c.close()

SQLAlchemy
SQLAlchemy is renowned for its object-relational mapping (ORM) based on a design 
pattern, where Python classes are mapped to database tables. In practice, this means 
that an extra abstraction layer is added, so we use the SQLAlchemy API to talk to the 
database instead of issuing SQL commands. SQLAlchemy takes care of the details 
behind the scene. The drawback is that you have to learn the API and may have to pay 
a small performance penalty. In this section, you will learn how to set up SQLAlchemy, 
and populate and query databases with SQLAlchemy.

Installing and setting up SQLAlchemy
The following is the command to install SQLAlchemy:

$ pip install sqlalchemy

The latest version of SQLAlchemy at the time of writing was 0.9.6. The download 
page for SQLAlchemy is available at http://www.sqlalchemy.org/download.html 
with links to installers and code repositories.

SQLAlchemy also has a support page available at http://www.sqlalchemy. 
org/support.html. After modifying the pkg_check.py script, we can display  
the modules of SQLAlchemy:

sqlalchemy version 0.9.6

sqlalchemy.connectors DESCRIPTION # connectors/__init__.py #  
Copyright (C) 2005-2014 the SQLAlchemy authors and contributors <see  
AUTHORS file> # # This module is

sqlalchemy.databases DESCRIPTION Include imports from the  
sqlalchemy.dialects package for backwards compatibility with pre 0.6  
versions. PACKAGE CONTENTS DATA __

sqlalchemy.dialects DESCRIPTION # dialects/__init__.py # Copyright  
(C) 2005-2014 the SQLAlchemy authors and contributors <see AUTHORS  
file> # # This module is p

http://www.sqlalchemy.org/download.html
http://www.sqlalchemy. org/support.html
http://www.sqlalchemy. org/support.html
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sqlalchemy.engine DESCRIPTION The engine package defines the basic  
components used to interface DB-API modules with higher-level  
statement construction, conne

sqlalchemy.event DESCRIPTION # event/__init__.py # Copyright (C)  
2005-2014 the SQLAlchemy authors and contributors <see AUTHORS file>  
# # This module is part

sqlalchemy.ext DESCRIPTION # ext/__init__.py # Copyright (C) 2005- 
2014 the SQLAlchemy authors and contributors <see AUTHORS file> # #  
This module is part o

sqlalchemy.orm DESCRIPTION See the SQLAlchemy object relational  
tutorial and mapper configuration documentation for an overview of  
how this module is used.

sqlalchemy.sql DESCRIPTION # sql/__init__.py # Copyright (C) 2005- 
2014 the SQLAlchemy authors and contributors <see AUTHORS file> # #  
This module is part o

sqlalchemy.testing DESCRIPTION # testing/__init__.py # Copyright (C)  
2005-2014 the SQLAlchemy authors and contributors <see AUTHORS file>  
# # This module is pa

sqlalchemy.util DESCRIPTION # util/__init__.py # Copyright (C) 2005- 
2014 the SQLAlchemy authors and contributors <see AUTHORS file> # #  
This module is part 

SQLAlchemy requires us to define a superclass as follows:

from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()

In this and the following sections, we will make use of a small database with two 
tables. The first table defines an observation station. The second table represents 
sensors in the stations. Each station has zero, one, or many sensors. A station is 
identified by an integer ID, which is automatically generated by the database.  
Also, a station is identified by a name, which is unique and mandatory.

A sensor has an integer ID as well. We keep track of the last value measured by  
the sensor. This value can have a multiplier related to it. The setup described in  
this section is expressed in the alchemy_entities.py file in this book's code  
bundle (you don't have to run this script, but it is used by another script):

from sqlalchemy import Column, ForeignKey, Integer, String, Float
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship
from sqlalchemy import create_engine
from sqlalchemy import UniqueConstraint

Base = declarative_base()
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class Station(Base):
    __tablename__ = 'station'
    id = Column(Integer, primary_key=True)
    name = Column(String(14), nullable=False, unique=True)

    def __repr__(self):
        return "Id=%d name=%s" %(self.id, self.name)

class Sensor(Base):
    __tablename__ = 'sensor'
    id = Column(Integer, primary_key=True)
    last = Column(Integer)
    multiplier = Column(Float)
    station_id = Column(Integer, ForeignKey('station.id'))
    station = relationship(Station)

    def __repr__(self):
        return "Id=%d last=%d multiplier=%.1f station_id=%d"  
%(self.id, self.last, self.multiplier, self.station_id)

if __name__ == "__main__":
    print "This script is used by another script. Run python  
alchemy_query.py"

Populating a database with SQLAlchemy
Creating the tables will be deferred to the next section. In this section, we will 
prepare a script, which will populate the database (you don't have to run this;  
it is used by a script in a later section). With a DBSession object, we can insert  
data into the tables. An engine is needed too, but creating the engine will also  
be deferred until the next section.

1. Create the DBSession object as follows:
Base.metadata.bind = engine

DBSession = sessionmaker(bind=engine)
session = DBSession()

2. Let's create two stations:
de_bilt = Station(name='De Bilt')
session.add(de_bilt)
session.add(Station(name='Utrecht'))
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session.commit()
print "Station", de_bilt

The rows are not inserted until we commit the session. The following is 
printed for the first station:
Station Id=1 name=De Bilt

3. Similarly, insert a sensor record as follows:
temp_sensor = Sensor(last=20, multiplier=.1,  
station=de_bilt)
session.add(temp_sensor)
session.commit()
print "Sensor", temp_sensor

The sensor is in the first station; therefore, we get the following printout:
Sensor Id=1 last=20 multiplier=0.1 station_id=1

The database population code can be found in the populate_db.py file in this book's 
code bundle (again you don't need to run this code; it's used by another script):

from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker

from alchemy_entities import Base, Sensor, Station

def populate(engine):
    Base.metadata.bind = engine

    DBSession = sessionmaker(bind=engine)
    session = DBSession()

    de_bilt = Station(name='De Bilt')
    session.add(de_bilt)
    session.add(Station(name='Utrecht'))
    session.commit()
    print "Station", de_bilt

    temp_sensor = Sensor(last=20, multiplier=.1, station=de_bilt)
    session.add(temp_sensor)
    session.commit()
    print "Sensor", temp_sensor

if __name__ == "__main__":
    print "This script is used by another script. Run python  
alchemy_query.py"
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Querying the database with SQLAlchemy
An engine is created from a URI as follows:

engine = create_engine('sqlite:///demo.db')

In this URI, we specified that we are using SQLite and the data is stored in the file 
demo.db. Create the station and sensor tables with the engine we just created:

Base.metadata.create_all(engine)

For SQLAlchemy queries, we need a DBSession object again, as shown in the 
previous section.

Select the first row in the station table:

station = session.query(Station).first()

Select all the stations as follows:

print "Query 1", session.query(Station).all()

The following will be the output:

Query 1 [Id=1 name=De Bilt, Id=2 name=Utrecht]

Select all the sensors as follows:

print "Query 2", session.query(Sensor).all()

The following will be the output:

Query 2 [Id=1 last=20 multiplier=0.1 station_id=1]

Select the first sensor, which belongs to the first station:

print "Query 3",  
session.query(Sensor).filter(Sensor.station ==  
station).one()

The following will be the output:

Query 3 Id=1 last=20 multiplier=0.1 station_id=1

We can again query with the pandas read_sql() method:

print read_sql("SELECT * FROM station",  
engine.raw_connection())



Chapter 8

[ 201 ]

You will get the following output:

   id     name
0   1  De Bilt
1   2  Utrecht

[2 rows x 2 columns]

Inspect the alchemy_query.py file in this book's code bundle:

from alchemy_entities import Base, Sensor, Station
from populate_db import populate
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
import os
from pandas.io.sql import read_sql

engine = create_engine('sqlite:///demo.db')
Base.metadata.create_all(engine)
populate(engine)
Base.metadata.bind = engine
DBSession = sessionmaker()
DBSession.bind = engine
session = DBSession()

station = session.query(Station).first()

print "Query 1", session.query(Station).all()
print "Query 2", session.query(Sensor).all()
print "Query 3", session.query(Sensor).filter(Sensor.station ==  
station).one()
print read_sql("SELECT * FROM station", engine.raw_connection())

try:
    os.remove('demo.db')
    print "Deleted demo.db"
except OSError:
    pass

Pony ORM
Pony ORM is another Python ORM package. Pony ORM is written in pure Python 
and has automatic query optimization and a GUI database schema editor. It also 
supports automatic transaction management, automatic caching, and composite 
keys. Pony ORM uses Python generator expressions, which are translated in SQL. 
Install it as follows:

$ sudo pip install pony



Working with Databases

[ 202 ]

$ pip freeze|grep pony
pony==0.5.1

Import the packages we will need in this example. Refer to the pony_ride.py  
file in this book's code bundle:

from pony.orm import Database, db_session 
from pandas.io.sql import write_frame
import statsmodels.api as sm

Create an in-memory SQLite database:

db = Database('sqlite', ':memory:')

Load the sunspots data and write it to the database with the pandas  
write_frame() function:

with db_session:
    data_loader = sm.datasets.sunspots.load_pandas()
    df = data_loader.data
    write_frame(df, "sunspots", db.get_connection())
    print db.select("count(*) FROM sunspots")

The number of rows in the sunspots table is printed as follows:

[309]

Dataset – databases for lazy people
Dataset is a Python library, which is basically a wrapper around SQLAlchemy.  
It claims to be so easy to use that even lazy people like it.

Install dataset as follows:

$ sudo pip install dataset

$ pip freeze|grep dataset

dataset==0.5.4

Create a SQLite in-memory database and connect to it:

import dataset
db = dataset.connect('sqlite:///:memory:')

Create a table called books:

table = db["books"]
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Actually, the table in the database isn't created yet, since we haven't specified any 
columns. We only created a related object. The table schema is created automatically 
from calls to the insert() method. Give the insert() method dictionaries with 
book titles:

table.insert(dict(title="NumPy Beginner's Guide",  
author='Ivan Idris'))
table.insert(dict(title="NumPy Cookbook", author='Ivan  
Idris'))
table.insert(dict(title="Learning NumPy", author='Ivan  
Idris'))

These are all excellent books, of course! The read_sql() pandas function can query 
this table too:

print read_sql('SELECT * FROM books',  
db.executable.raw_connection())

The following is the output:

   id      author                   title
0   1  Ivan Idris  NumPy Beginner's Guide
1   2  Ivan Idris          NumPy Cookbook
2   3  Ivan Idris          Learning NumPy

[3 rows x 3 columns]

Load the sunspots data and show the first five rows as follows:

write_frame(df, "sunspots", db.executable.raw_connection())
table = db['sunspots']

for row in table.find(_limit=5):
   print row

The following will be printed:

OrderedDict([(u'YEAR', 1700.0), (u'SUNACTIVITY', 5.0)])
OrderedDict([(u'YEAR', 1701.0), (u'SUNACTIVITY', 11.0)])
OrderedDict([(u'YEAR', 1702.0), (u'SUNACTIVITY', 16.0)])
OrderedDict([(u'YEAR', 1703.0), (u'SUNACTIVITY', 23.0)])
OrderedDict([(u'YEAR', 1704.0), (u'SUNACTIVITY', 36.0)])

We can easily show the tables in the database with the following line:

print "Tables", db.tables

The following is the output of the preceding code:

Tables [u'books', 'sunspots']
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The following is the content of the dataset_demo.py file in this book's code bundle:

import dataset
from pandas.io.sql import read_sql
from pandas.io.sql import write_frame
import statsmodels.api as sm

db = dataset.connect('sqlite:///:memory:')
table = db["books"]
table.insert(dict(title="NumPy Beginner's Guide", author='Ivan  
Idris'))
table.insert(dict(title="NumPy Cookbook", author='Ivan Idris'))
table.insert(dict(title="Learning NumPy", author='Ivan Idris'))
print read_sql('SELECT * FROM books', db.executable.raw_connection()) 

data_loader = sm.datasets.sunspots.load_pandas()
df = data_loader.data
write_frame(df, "sunspots", db.executable.raw_connection()) 
table = db['sunspots']

for row in table.find(_limit=5):
   print row

print "Tables", db.tables

PyMongo and MongoDB
MongoDB (humongous) is a NoSQL document-oriented database. The documents 
are stored in the BSON format, which is JSON like. You can download a MongoDB 
distribution from http://www.mongodb.org/downloads. Installing should be just 
a matter of unpacking a compressed archive. The version at the time of writing was 
2.6.3. In the bin directory of the distribution, we will find the mongod file, which starts 
the server. MongoDB expects to find a /data/db directory. This is the directory where 
data is stored. We can specify another directory from the command line as follows:

$ mkdir /tmp/db

Start the database from the directory containing its binary executables:

./mongod --dbpath /tmp/db

We need to keep this process running to be able to query the database.

PyMongo is a Python driver for MongoDB. Install PyMongo as follows:

$ sudo pip install pymongo
$ pip freeze|grep pymongo
pymongo==2.7.1

http://www.mongodb.org/downloads
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Connect to the MongoDB test database:

from pymongo import MongoClient
client = MongoClient()
db = client.test_database

Recall that we can create JSON from a pandas DataFrame. Create the JSON and store 
it in MongoDB:

data_loader = sm.datasets.sunspots.load_pandas()
df = data_loader.data
rows = json.loads(df.T.to_json()).values()
db.sunspots.insert(rows)

Query the document we just created:

cursor = db['sunspots'].find({})
df =  pd.DataFrame(list(cursor))
print df

This prints the entire pandas DataFrame. Refer to the mongo_demo.py file in this 
book's code bundle:

from pymongo import MongoClient
import statsmodels.api as sm
import json
import pandas as pd

client = MongoClient()
db = client.test_database

data_loader = sm.datasets.sunspots.load_pandas()
df = data_loader.data
rows = json.loads(df.T.to_json()).values()
db.sunspots.insert(rows)

cursor = db['sunspots'].find({})
df =  pd.DataFrame(list(cursor))
print df

db.drop_collection('sunspots')
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Storing data in Redis
Redis (REmote DIctionary Server) is an in-memory, key-value database, written in 
C. In the in-memory mode, Redis is extremely fast, with writing and reading being 
almost equally fast. Redis follows the publish/subscribe model and uses Lua scripts 
as stored procedures. Publish/subscribe makes use of channels to which a client can 
subscribe in order to receive messages. The most recent Redis version at the time of 
writing was 2.8.12. Redis can be downloaded from the home page at http://redis.
io/. After unpacking the Redis distribution, issue the following command to compile 
the code and create all the binaries:

$ make

Run the server as follows:

$ src/redis-server

Now let's install a Python driver:

$ sudo pip install redis
$ pip freeze|grep redis
redis==2.10.1

It's pretty easy to use Redis when you realize it's a giant dictionary. However, Redis 
does have its limitations. Sometimes, it's just convenient to store a complex object 
as a JSON string (or other format). That's what we are going to do with a pandas 
DataFrame. Connect to Redis as follows:

r = redis.StrictRedis()

Create a key-value pair with a JSON string:

r.set('sunspots', data)

Retrieve the data with the following line:

blob = r.get('sunspots')

The code is straightforward and given in the redis_demo.py file in this book's  
code bundle:

import redis
import statsmodels.api as sm
import pandas as pd

r = redis.StrictRedis()
data_loader = sm.datasets.sunspots.load_pandas()

http://redis.io/
http://redis.io/
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df = data_loader.data
data = df.T.to_json()
r.set('sunspots', data)
blob = r.get('sunspots')
print pd.read_json(blob)

Apache Cassandra
Apache Cassandra mixes features of key-value and traditional relational databases. 
In a conventional relational database, the columns of a table are fixed. In Cassandra, 
however, rows within the same table can have different columns. Cassandra is 
therefore column oriented, since it allows a flexible schema for each row. Columns are 
organized in so-called column families, which are equivalent to tables in relational 
databases. Joins and subqueries are not possible with Cassandra. Cassandra can be 
downloaded from http://cassandra.apache.org/download/. The latest version at 
the time of writing was 2.0.9. Please refer to http://wiki.apache.org/cassandra/
GettingStarted to get started.

Run the server from the command line as follows:

$ bin/cassandra –f

If you run the previous command, you may get the following error message:

Cassandra 2.0 and later require Java 7 or later.

Java in this context is a high-level programming language such as Python. Java 7 
refers to version 1.7 (it's a marketing ploy). If you have Java installed, you can check 
its version as follows:

$ java –version
java version "1.7.0_60"

For most operating systems, except Mac OS X, you can download Java 
from http://www.oracle.com/technetwork/java/javase/
downloads/index.html.
Instructions for installing Java on Mac are given at http://docs.
oracle.com/javase/7/docs/webnotes/install/mac/mac-
jdk.html. Since this is a Python book, we will not dwell too long 
on the details of installing Java. A quick web search should give you 
more than enough information.

http://cassandra.apache.org/download/
http://wiki.apache.org/cassandra/GettingStarted
http://wiki.apache.org/cassandra/GettingStarted
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://docs.oracle.com/javase/7/docs/webnotes/install/mac/mac-jdk.html
http://docs.oracle.com/javase/7/docs/webnotes/install/mac/mac-jdk.html
http://docs.oracle.com/javase/7/docs/webnotes/install/mac/mac-jdk.html
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Create the directories listed in conf/cassandra.yaml or tweak them  
as follows:

data_file_directories:
/tmp/lib/cassandra/data
commitlog_directory: /tmp/lib/cassandra/commitlog
saved_caches_directory: /tmp/lib/cassandra/saved_caches

The following commands make sense if you don't want to keep the data:

$ mkdir -p /tmp/lib/cassandra/data
$ mkdir –p /tmp/lib/cassandra/commitlog
$ mkdir –p /tmp/lib/cassandra/saved_caches

Install a Python driver with the following command:

$ sudo pip install cassandra-driver
$ pip freeze|grep cassandra-driver
cassandra-driver==2.0.2

You might get the following error message:

The required version of setuptools (>=0.9.6) is not  
available,
    and can't be installed while this script is running.  
Please
    install a more recent version first, using
    'easy_install -U setuptools'.

This seems pretty self-explanatory.

Now it's time for the code. Connect to a cluster and create a session as follows:

cluster = Cluster()
session = cluster.connect()

Cassandra has the concept of keyspace. A keyspace holds tables. Cassandra has its 
own query language called Cassandra Query Language (CQL). CQL is very similar 
to SQL. Create the keyspace and set the session to use it:

session.execute("CREATE KEYSPACE IF NOT EXISTS mykeyspace  
WITH REPLICATION = { 'class' : 'SimpleStrategy',  
'replication_factor' : 1 };")
session.set_keyspace('mykeyspace')

Now, create a table for the sunspots data:

session.execute("CREATE TABLE IF NOT EXISTS sunspots (year  
decimal PRIMARY KEY, sunactivity decimal);")
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1. Create a statement that we will use in a loop to insert rows of the data  
as tuples:
query = SimpleStatement(
    "INSERT INTO sunspots (year, sunactivity) VALUES (%s,  
%s)",
    consistency_level=ConsistencyLevel.QUORUM)

2. The following line inserts the data:
for row in rows:
    session.execute(query, row)

3. Get the count of the rows in the table:
print session.execute("SELECT COUNT(*) FROM sunspots")

This prints the row count as follows:
[Row(count=309)]

4. Drop the keyspace and shut down the cluster:
session.execute('DROP KEYSPACE mykeyspace')
cluster.shutdown()

Refer to the cassandra_demo.py file in this book's code bundle:

from cassandra import ConsistencyLevel
from cassandra.cluster import Cluster
from cassandra.query import SimpleStatement
import statsmodels.api as sm

cluster = Cluster()
session = cluster.connect()
session.execute("CREATE KEYSPACE IF NOT EXISTS mykeyspace WITH  
REPLICATION = { 'class' : 'SimpleStrategy', 'replication_factor' :  
1 };")
session.set_keyspace('mykeyspace')
session.execute("CREATE TABLE IF NOT EXISTS sunspots (year decimal  
PRIMARY KEY, sunactivity decimal);")

query = SimpleStatement(
    "INSERT INTO sunspots (year, sunactivity) VALUES (%s, %s)",
    consistency_level=ConsistencyLevel.QUORUM)

data_loader = sm.datasets.sunspots.load_pandas()
df = data_loader.data
rows = [tuple(x) for x in df.values]
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for row in rows:
    session.execute(query, row)

print session.execute("SELECT COUNT(*) FROM sunspots")

session.execute('DROP KEYSPACE mykeyspace') 
cluster.shutdown()

Summary
We stored annual sunspots cycles data in different relational and NoSQL databases.

The term relational here does not just pertain to relationships between tables; firstly, 
it has to do with the relationship between columns inside a table; secondly, it relates 
to connections between tables.

The sqlite3 module in the standard Python distribution can be used to work  
with a SQLite database. We can give pandas a SQLite database connection or  
a SQLAlchemy connection.

SQLAlchemy is renowned for its ORM, based on a design pattern, where Python 
classes are mapped to database tables. The ORM pattern is a general architectural 
pattern applicable to other object-oriented programming languages. SQLAlchemy 
abstracts away the technical details of working with databases including writing SQL.

MongoDB is a document-based store, which can hold a huge amount of data.

In the in-memory mode, Redis is extremely fast, with writing and reading being almost 
equally fast. Redis is a key-value store that functions similarly to a Python dictionary.

Apache Cassandra mixes features of key-value and traditional relational databases. 
It is column oriented and its columns are organized into families, which are the 
equivalent of tables in relational databases. Rows in Apache Cassandra are not  
tied to a particular set of columns.

The next chapter, Chapter 9, Analyzing Textual Data and Social Media, describes analysis 
techniques for plain text data. Plain text data is found in many organizations and on 
the Internet. Generally, plain text data is very unstructured and requires a different 
approach than data that has been tabulated and cleaned. For the analysis, we will use 
NLTK—an open source Python package. NLTK is very comprehensive and comes 
with its own datasets.



Analyzing Textual Data  
and Social Media

In the previous chapters, we focused on the analysis of structured data, mostly 
in tabular format. In reality, plain text is the most predominant form of data 
available today. Text analysis applies analysis of word frequency distributions, 
pattern recognition, tagging, link and association analysis, sentiment analysis, and 
visualization. We will analyze text with the Python Natural Language Toolkit 
(NLTK) library. NLTK comes with a collection of sample texts called corpora.  
A small example of network analysis will also be covered. The following topics  
will be discussed in this chapter:

• Installing NLTK
• Filtering out stopwords, names, and numbers
• The bag-of-words model
• Analyzing word frequencies
• Naive Bayes classification
• Sentiment analysis
• Creating word clouds
• Social network analysis
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Installing NLTK
NLTK is a Python API for the analysis of texts written in natural languages, such as 
English. NLTK was created in 2001 and was originally intended as a teaching tool. 
Install NLTK with the following command:

$ sudo pip install nltk
$ pip freeze|grep nltk
nltk==2.0.4

As usual, we will check the installation with a new version of the pkg_check.py file. 
The following import statement is required:

import nltk

If everything works, we should get a result similar to the following:

nltk version 2.0.4

nltk.app DESCRIPTION chartparser: Chart Parser chunkparser: Regular- 
Expression Chunk Parser collocations: Find collocations in text  
concordance: Part

nltk.ccg DESCRIPTION For more information see  
nltk/doc/contrib/ccg/ccg.pdf PACKAGE CONTENTS api chart combinator  
lexicon DATA BackwardApplication<n

nltk.chat DESCRIPTION A class for simple chatbots. These perform  
simple pattern matching on sentences typed by users, and respond with  
automatically g

nltk.chunk DESCRIPTION Classes and interfaces for identifying non- 
overlapping linguistic groups (such as base noun phrases) in  
unrestricted text. This 

nltk.classify DESCRIPTION Classes and interfaces for labeling tokens  
with category labels (or "class labels"). Typically, labels are  
represented with stri

nltk.cluster DESCRIPTION This module contains a number of basic  
clustering algorithms. Clustering describes the task of discovering  
groups of similar ite

nltk.corpus

nltk.draw DESCRIPTION # Natural Language Toolkit: graphical  
representations package # # Copyright (C) 2001-2012 NLTK Project #  
Author: Edward Loper<e

nltk.examples

nltk.inference

nltk.metrics DESCRIPTION Classes and methods for scoring processing  
modules. PACKAGE CONTENTS agreement association confusionmatrix  
distance scores segme
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nltk.misc DESCRIPTION # Natural Language Toolkit: Miscellaneous  
modules # # Copyright (C) 2001-2012 NLTK Project # Author: Steven  
Bird <sb@csse.unimel

nltk.model DESCRIPTION # Natural Language Toolkit: Language Models #  
# Copyright (C) 2001-2012 NLTK Project # Author: Steven Bird  
<sb@csse.unimelb.edu.

nltk.parse DESCRIPTION Classes and interfaces for producing tree  
structures that represent the internal organization of a text. This  
task is known as "

nltk.sem DESCRIPTION This package contains classes for representing  
semantic structure in formulas of first-order logic and for  
evaluating such formu

nltk.stem DESCRIPTION Interfaces used to remove morphological affixes  
from words, leaving only the word stem. Stemming algorithms aim to  
remove those 

nltk.tag DESCRIPTION This package contains classes and interfaces for  
part-of-speech tagging, or simply "tagging". A "tag" is a case- 
sensitive string

nltk.test DESCRIPTION Unit tests for the NLTK modules. These tests  
are intended to ensure that changes that we make to NLTK's code don't  
accidentally 

nltk.tokenize DESCRIPTION Tokenizers divide strings into lists of  
substrings. For example, tokenizers can be used to find the list of  
sentences or words i

However, we are not done yet; we still need to download the NLTK corpora.  
The download is relatively large (about 1.8 GB); however, we only have to  
download it once. Unless you know exactly which corpora you require, it's  
best to download all the available corpora. Download the corpora from the  
Python shell as follows:

$ python
>>> import nltk 
>>> nltk.download()

A GUI application should appear, where you can specify a destination and what 
to download. If you are new to NLTK, it's most convenient to choose the default 
options and download everything. In this chapter, we will need the stopwords, 
movie reviews, names, and Gutenberg corpora.
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Filtering out stopwords, names,  
and numbers
It's a common requirement in text analysis to get rid of stopwords (common words 
with low information value). NLTK has a stopwords corpora for a number of 
languages. Load the English stopwords corpus and print some of the words:

sw = set(nltk.corpus.stopwords.words('english'))
print "Stop words", list(sw)[:7]

The following common words are printed:

Stop words ['all', 'just', 'being', 'over', 'both', 'through',  
'yourselves']

Notice that all the words in this corpus are in lowercase.

NLTK also has a Gutenberg corpus. The Gutenberg project is a digital library of 
books mostly with expired copyright, which are available for free on the Internet  
(see http://www.gutenberg.org/).

Load the Gutenberg corpus and print some of its filenames:

gb = nltk.corpus.gutenberg
print "Gutenberg files", gb.fileids()[-5:]

Some of the titles printed may be familiar to you:

Gutenberg files ['milton-paradise.txt', 'shakespeare-caesar.txt',  
'shakespeare-hamlet.txt', 'shakespeare-macbeth.txt', 'whitman- 
leaves.txt']

Extract the first couple of sentences from the milton-paradise.txt file that we  
will filter later:

text_sent = gb.sents("milton-paradise.txt")[:2]
print "Unfiltered", text_sent

The following sentences are printed:

Unfiltered [['[', 'Paradise', 'Lost', 'by', 'John', 'Milton',  
'1667', ']'], ['Book', 'I']]

Now, filter out the stopwords as follows:

for sent in text_sent:
    filtered = [w for w in sent if w.lower() not in sw]
    print "Filtered", filtered

http://www.gutenberg.org/
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For the first sentence, we get the following output:

Filtered ['[', 'Paradise', 'Lost', 'John', 'Milton', '1667', ']']

If we compare with the previous snippet, we notice that the word by has been 
filtered out as it was found in the stopwords corpus. Sometimes, we want to remove 
numbers and names too. We can remove words based on Part of Speech (POS) tags. 
In this tagging scheme, numbers correspond to the Cardinal Number (CD) tag. 
Names correspond to the proper noun singular (NNP) tag. Tagging is an inexact 
process based on heuristics. It's a big topic that deserves an entire book (see the 
Preface). Tag the filtered text with the pos_tag() function:

tagged = nltk.pos_tag(filtered)
print "Tagged", tagged

For our text, we get the following tags:

Tagged [('[', 'NN'), ('Paradise', 'NNP'), ('Lost', 'NNP'), ('John',  
'NNP'), ('Milton', 'NNP'), ('1667', 'CD'), (']', 'CD')]

The pos_tag() function returns a list of tuples, where the second element in each 
tuple is the tag. As you can see, some of the words are tagged as NNP, although they 
probably shouldn't be. The heuristic here is to tag words as NNP if the first character 
of a word is uppercase. If we set all the words to be lowercase, we will get a different 
result. This is left as an exercise for the reader. It's easy to remove the words in the 
list with the NNP and CD tags. Have a look at the filtering.py file in this book's 
code bundle:

import nltk

sw = set(nltk.corpus.stopwords.words('english'))
print "Stop words", list(sw)[:7]

gb = nltk.corpus.gutenberg
print "Gutenberg files", gb.fileids()[-5:]
text_sent = gb.sents("milton-paradise.txt")[:2]
print "Unfiltered", text_sent

for sent in text_sent:
    filtered = [w for w in sent if w.lower() not in sw]
    print "Filtered", filtered
    tagged = nltk.pos_tag(filtered)
    print "Tagged", tagged 

    words= []
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    for word in tagged:
        if word[1] != 'NNP' and word[1] != 'CD':
           words.append(word[0]) 

    print words

The bag-of-words model
In the bag-of-words model, we create from a document a bag containing words 
found in the document. In this model, we don't care about the word order. For each 
word in the document, we count the number of occurrences. With these word counts, 
we can do statistical analysis, for instance, to identify spam in e-mail messages.

If we have a group of documents, we can view each unique word in the corpus as a 
feature; here, "feature" means parameter or variable. Using all the word counts, we 
can build a feature vector for each document; "vector" is used here in the mathematical 
sense. If a word is present in the corpus but not in the document, the value of this 
feature will be 0. Surprisingly, NLTK doesn't have a handy utility currently to create a 
feature vector. However, the machine learning Python library, scikit-learn, does have 
a CountVectorizer class that we can use. In the next chapter, Chapter 10, Predictive 
Analytics and Machine Learning, we will do more with scikit-learn.

First, install scikit-learn as follows:

$ pip scikit-learn
$ pip freeze|grep learn
scikit-learn==0.15.0

Load two text documents from the NLTK Gutenberg corpus:

hamlet = gb.raw("shakespeare-hamlet.txt")
macbeth = gb.raw("shakespeare-macbeth.txt")

Create the feature vector by omitting English stopwords:

cv = CountVectorizer(stop_words='english')
print "Feature vector", cv.fit_transform([hamlet,  
macbeth]).toarray()

These are the feature vectors for the two documents:

Feature vector [[ 1  0  1 ..., 14  0  1]

 [ 0  1  0 ...,  1  1  0]]
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Print a small selection of the features (unique words) we found:

print "Features", cv.get_feature_names()[:5]

The features are given in alphabetical order:

Features [u'1599', u'1603', u'abhominably', u'abhorred', u'abide']

The code is contained in bag_words.py file in this book's code bundle:

import nltk
from sklearn.feature_extraction.text import CountVectorizer

gb = nltk.corpus.gutenberg
hamlet = gb.raw("shakespeare-hamlet.txt")
macbeth = gb.raw("shakespeare-macbeth.txt")

cv = CountVectorizer(stop_words='english')
print "Feature vector", cv.fit_transform([hamlet, macbeth]).toarray()
print "Features", cv.get_feature_names()[:5]

Analyzing word frequencies
The NLTK FreqDist class encapsulates a dictionary of words and counts for a  
given list of words. Load the Gutenberg text of Julius Caesar by William Shakespeare. 
Let's filter out stopwords and punctuation:

punctuation = set(string.punctuation)
filtered = [w.lower() for w in words if w.lower() not in sw and  
w.lower() not in punctuation]

Create a FreqDist object and print associated keys and values with highest frequency:

fd = nltk.FreqDist(filtered)
print "Words", fd.keys()[:5]
print "Counts", fd.values()[:5]

The keys and values are printed as follows:

Words ['d', 'caesar', 'brutus', 'bru', 'haue']
Counts [215, 190, 161, 153, 148]
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The first word in this list is of course not an English word, so we may need to add the 
heuristic that words have a minimum of two characters. The NLTK FreqDist class 
allows dictionary-like access, but it also has convenience methods. Get the word with 
the most frequent word and the related count:

print "Max", fd.max()
print "Count", fd['d']

The following result shouldn't be a surprise:

Max d
Count 215

The analysis until this point concerned single words, but we can extend the analysis 
to word pairs and triplets. These are also called bigrams and trigrams. We can find 
them with the bigrams() and trigrams() functions. Repeat the analysis, but this 
time for bigrams:

fd = nltk.FreqDist(nltk.bigrams(filtered))
print "Bigrams", fd.keys()[:5]
print "Counts", fd.values()[:5]
print "Bigram Max", fd.max()
print "Bigram count", fd[('let', 'vs')]

The following output should be printed:

Bigrams [('let', 'vs'), ('wee', 'l'), ('mark', 'antony'), ('marke', 
'antony'), ('st', 'thou')]
Counts [16, 15, 13, 12, 12]
Bigram Max ('let', 'vs')
Bigram count 16

Have a peek at the frequencies.py file in this book's code bundle:

import nltk
import string

gb = nltk.corpus.gutenberg
words = gb.words("shakespeare-caesar.txt")

sw = set(nltk.corpus.stopwords.words('english'))
punctuation = set(string.punctuation)
filtered = [w.lower() for w in words if w.lower() not in sw and 
w.lower() not in punctuation]
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fd = nltk.FreqDist(filtered)
print "Words", fd.keys()[:5]
print "Counts", fd.values()[:5]
print "Max", fd.max()
print "Count", fd['d']

fd = nltk.FreqDist(nltk.bigrams(filtered))
print "Bigrams", fd.keys()[:5]
print "Counts", fd.values()[:5]
print "Bigram Max", fd.max()
print "Bigram count", fd[('let', 'vs')]

Naive Bayes classification
Classification algorithms are a type of machine learning algorithm that involve 
determining the class (category or type) of a given item. For instance, we could try  
to determine the genre of a movie based on some features. In this case, the genre 
is the class to be predicted. In the next chapter, Chapter 10, Predictive Analytics and 
Machine Learning, we will continue with an overview of machine learning. In the 
meantime, we will discuss a popular algorithm called Naive Bayes classification,  
which is frequently used to analyze text documents.

Naive Bayes classification is a probabilistic algorithm based on the Bayes theorem 
from probability theory and statistics. The Bayes theorem formulates how to 
discount the probability of an event based on new evidence. For example, imagine 
that we have a bag with pieces of chocolate and other items we can't see. We will 
call the probability of drawing a piece of dark chocolate P(D). We will denote the 
probability of drawing a piece of chocolate as P(C). Of course, the total probability 
is always 1, so P(D) and P(C) can be at most 1. The Bayes theorem states that the 
posterior probability is proportional to the prior probability times likelihood:

( ) ( ) ( )
( )
|

|
P D C P D

P D C
P C

=

P(D|C) in the preceding notation means the probability of event D given C. When we 
haven't drawn any items yet, P(D) = 0.5 because we don't have any information 
yet. To actually apply the formula, we need to know P(C|D) and P(C) or we have  
to determine those indirectly.
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Naive Bayes Classification is called naive because it makes the simplifying assumption 
of independence between features. In practice, the results are usually pretty good, so 
this assumption is often warranted to a certain level. Recently, it was found that there 
are theoretical reasons why the assumption makes sense. However, since machine 
learning is a rapidly evolving field, algorithms have been invented with (slightly) 
better performance.

Let's try to classify words as stopwords or punctuation. As a feature, we will use the 
word length, since stopwords and punctuation tend to be short.

This setup leads us to define the following functions:

def word_features(word):
   return {'len': len(word)}

def isStopword(word):
   return word in sw or word in punctuation

Label the words in the Gutenberg shakespeare-caesar.txt as being a stopword  
or not:

labeled_words = ([(word.lower(), isStopword(word.lower())) for  
word in words])
random.seed(42)
random.shuffle(labeled_words)
print labeled_words[:5]

Five labeled words will appear as follows:

[('was', True), ('greeke', False), ('cause', False), ('but', True),  
('house', False)]

For each word, determine its length:

featuresets = [(word_features(n), word) for (n, word) in  
labeled_words]

In previous chapters, we mentioned overfitting and how to avoid this with  
cross-validation by having a train and a test dataset. We will train a Naive  
Bayes classifier on 90 percent of the words and test on the remaining  
10 percent. Create the train set and test set and train the data:

cutoff = int(.9 * len(featuresets))
train_set, test_set = featuresets[:cutoff], featuresets[cutoff:]
classifier = nltk.NaiveBayesClassifier.train(train_set)
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We can now check what the classifier gives for some words:

classifier = nltk.NaiveBayesClassifier.train(train_set)
print "'behold' class",  
classifier.classify(word_features('behold'))
print "'the' class", classifier.classify(word_features('the'))

Fortunately, the words are properly classified:

'behold' class False
'the' class True

Determine the classifier accuracy on the test set as follows:

print "Accuracy", nltk.classify.accuracy(classifier, test_set)

We get a high accuracy for this classifier of around 85 percent. Print an overview  
of the most informative features:

print classifier.show_most_informative_features(5)

The overview shows the word lengths that are most useful for the  
classification process:

The code is in the naive_classification.py file in this book's code bundle:

import nltk
import string
import random

sw = set(nltk.corpus.stopwords.words('english'))
punctuation = set(string.punctuation)

def word_features(word):
   return {'len': len(word)}

def isStopword(word):
    return word in sw or word in punctuation
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gb = nltk.corpus.gutenberg
words = gb.words("shakespeare-caesar.txt")

labeled_words = ([(word.lower(), isStopword(word.lower())) for  
word in words])
random.seed(42)
random.shuffle(labeled_words)
print labeled_words[:5]

featuresets = [(word_features(n), word) for (n, word) in  
labeled_words]
cutoff = int(.9 * len(featuresets))
train_set, test_set = featuresets[:cutoff], featuresets[cutoff:]
classifier = nltk.NaiveBayesClassifier.train(train_set)
print "'behold' class",  
classifier.classify(word_features('behold'))
print "'the' class", classifier.classify(word_features('the'))

print "Accuracy", nltk.classify.accuracy(classifier, test_set)
print classifier.show_most_informative_features(5)

Sentiment analysis
Opinion mining or sentiment analysis is a hot, new research field dedicated to 
the automatic evaluation of opinions as expressed on social media, product review 
websites, or other forums. Often, we want to know whether an opinion is positive, 
neutral, or negative. This is, of course, a form of classification as seen in the previous 
section. As such, we can apply any number of classification algorithms. Another 
approach is to semiautomatically (with some manual editing) compose a list of 
words with an associated numerical sentiment score (the word "good" can have a 
score of 5 and the word "bad" a score of -5). If we have such a list, we can look up all 
words in a text document and, for example, sum up all the found sentiment scores. 
The number of classes can be more than three, like a five-star rating scheme.

We will apply Naive Bayes classification to the NLTK movie reviews corpus with the 
goal of classifying movie reviews as either positive or negative. First, we will load 
the corpus and filter out stopwords and punctuation. These steps will be omitted, 
since we have performed them before. You may consider more elaborate filtering 
schemes, but keep in mind that excessive filtering may hurt accuracy. Label the 
movie reviews documents using the categories() method:

labeled_docs = [(list(movie_reviews.words(fid)), cat)
        for cat in movie_reviews.categories()
        for fid in movie_reviews.fileids(cat)]
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The complete corpus has tens of thousands of unique words that we can use as 
features. However, using all these words might be inefficient. Select the top five 
percent of the most frequent words:

words = FreqDist(filtered)
N = int(.05 * len(words.keys()))
word_features = words.keys()[:N]

For each document, we can extract features using a number of methods including  
the following:

• Check whether the given document has a word or not
• Determine the number of occurrences of a word for a given document
• Normalize word counts so that the maximum normalized word count will  

be less than or equal to 1
• Take the logarithm of counts plus one (to avoid taking the logarithm of zero)
• Combine all the previous points into one metric

As the saying goes, all roads lead to Rome. Of course, some roads are safer and will 
bring you to Rome faster. Define the following function, which uses raw word  
counts as a metric:

def doc_features(doc):
    doc_words = FreqDist(w for w in doc if not isStopWord(w))
    features = {}
    for word in word_features:
        features['count (%s)' % word] = (doc_words.get(word, 0))
    return features

We can now train our classifier just as we did in the previous example. An accuracy 
of 78 percent is reached, which is decent and comes close to what is possible with 
sentiment analysis. Research has found that even humans don't always agree on the 
sentiment of a given document (see http://mashable.com/2010/04/19/sentiment-
analysis/). Therefore, we can't have a hundred percent perfect accuracy with 
sentiment analysis software.

http://mashable.com/2010/04/19/sentiment-analysis/
http://mashable.com/2010/04/19/sentiment-analysis/
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The most informative features are printed as follows:

If we go through this list, we find obvious positive words such as "wonderful" and 
"outstanding". The words "bad", "stupid", and "boring" are the obvious negative 
words. It would be interesting to analyze the remaining features. This is left as an 
exercise for the reader. Refer to the sentiment.py file in this book's code bundle:

import random
from nltk.corpus import movie_reviews
from nltk.corpus import stopwords
from nltk import FreqDist
from nltk import NaiveBayesClassifier
from nltk.classify import accuracy
import string

labeled_docs = [(list(movie_reviews.words(fid)), cat)
        for cat in movie_reviews.categories()
        for fid in movie_reviews.fileids(cat)]
random.seed(42)
random.shuffle(labeled_docs)

review_words = movie_reviews.words()
print "# Review Words", len(review_words)

sw = set(stopwords.words('english'))
punctuation = set(string.punctuation)

def isStopWord(word):
    return word in sw or word in punctuation

filtered = [w.lower() for w in review_words if not isStopWord(w.
lower())]
print "# After filter", len(filtered)
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words = FreqDist(filtered)
N = int(.05 * len(words.keys()))
word_features = words.keys()[:N]

def doc_features(doc):
    doc_words = FreqDist(w for w in doc if not isStopWord(w))
    features = {}
    for word in word_features:
        features['count (%s)' % word] = (doc_words.get(word, 0))
    return features

featuresets = [(doc_features(d), c) for (d,c) in labeled_docs]
train_set, test_set = featuresets[200:], featuresets[:200]
classifier = NaiveBayesClassifier.train(train_set)
print "Accuracy", accuracy(classifier, test_set)

print classifier.show_most_informative_features()

Creating word clouds
You may have seen word clouds produced by Wordle or others before. If not,  
you will see them soon enough in this chapter. A couple of Python libraries  
can create word clouds; however, these libraries don't seem to beat the quality 
produced by Wordle yet. We can create a word cloud via the Wordle web page  
on http://www.wordle.net/advanced. Wordle requires a list of words and  
weights in the following format:

Word1 : weight
Word2 : weight

Modify the code from the previous example to print the word list. As a metric,  
we will use the word frequency and select the top percent. We don't need anything 
new and the final code is in the cloud.py file in this book's code bundle:

from nltk.corpus import movie_reviews
from nltk.corpus import stopwords
from nltk import FreqDist
import string

sw = set(stopwords.words('english'))
punctuation = set(string.punctuation)

def isStopWord(word):
    return word in sw or word in punctuation

http://www.wordle.net/advanced
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review_words = movie_reviews.words()
filtered = [w.lower() for w in review_words if not isStopWord(w.
lower())]

words = FreqDist(filtered)
N = int(.01 * len(words.keys()))
tags = words.keys()[:N]

for tag in tags:
    print tag, ':', words[tag]

Copy and paste the output into the Wordle web page and generate the following 
word cloud:

If we analyze the word cloud, it may occur to us that the result is far from  
perfect, so we may want to try something better. For instance, we can try  
to do the following things:

• Filter more: We should get rid of words that contain numeric characters  
and names. NLTK has a names corpus we can use. Also, words that only 
occur once in the whole corpus are good to ignore, since they probably  
don't add enough information value.

• Use a better metric: The term frequency-inverse document frequency  
(tf-idf) seems a good candidate.
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The tf-idf metric can give us ranking weights for words in our corpus. Its value 
is proportional to the number of occurrences of a word (corresponds to term 
frequency) in a particular document. However, it's also inversely proportional to the 
number of documents in the corpus (corresponds to inverse document frequency), 
where the word occurs. The tf-idf value is the product of term frequency and inverse 
document frequency. If we need to implement tf-idf ourselves, we have to consider 
logarithmic scaling as well. Luckily, we don't have to concern ourselves with the 
implementation details, since scikit-learn has a TfidfVectorizer class with an 
efficient implementation. This class produces a sparse SciPy matrix. This is a term-
document matrix with tf-idf values for each combination of available words and 
documents. So, for a corpus with 2,000 documents and 25,000 unique words, we get 
a 2,000 x 25,000 matrix. A lot of the matrix values will be zero, which is where the 
sparseness comes in handy. The final rank weights can be found by summing all  
the tf-idf values for each word.

Improve filtering by using the isalpha() method and names corpus:

all_names = set([name.lower() for name in names.words()])

def isStopWord(word):
    return (word in sw or word in punctuation) or not  
word.isalpha() or word in all_names

We will again create a NLTK FreqDist to be able to ignore words that occur  
only once. The TfidfVectorizer class needs a list of strings representing  
each document in the corpus.

Create the list as follows:

for fid in movie_reviews.fileids():
    texts.append(" ".join([w.lower() for w in movie_reviews.words(fid)  
if not isStopWord(w.lower()) and words[w.lower()] > 1]))

Create the vectorizer; to be safe, let it ignore stopwords:

vectorizer = TfidfVectorizer(stop_words='english')

Create the sparse term-document matrix:

matrix = vectorizer.fit_transform(texts)

Sum the tf-idf values for each word and store it in a NumPy array:

sums = np.array(matrix.sum(axis=0)).ravel()
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Now, create a pandas DataFrame with the word rank weights and sort it:

ranks = []

for word, val in itertools.izip(vectorizer.get_feature_names(), sums):
    ranks.append((word, val))

    df = pd.DataFrame(ranks, columns=["term", "tfidf"])
    df = df.sort(['tfidf'])
    print df.head()

The lowest ranking values are printed as follows and can be considered for filtering:

term    tfidf
8742            greys  0.03035
2793      cannibalize  0.03035
2408          briefer  0.03035
19977  superintendent  0.03035
14022           ology  0.03035

Now, it's a matter of printing the top ranking words and presenting them to Wordle 
in order to create the following cloud:
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Unfortunately, you have to run the code yourself to see the difference in color with 
the previous word cloud. The tf-idf metric allows for more variation than the mere 
word frequency, so we get more varied colors. Also, the words in the cloud seem 
more relevant. Refer to cloud2.py file in this book's code bundle:

from nltk.corpus import movie_reviews
from nltk.corpus import stopwords
from nltk.corpus import names
from nltk import FreqDist
from sklearn.feature_extraction.text import TfidfVectorizer
import itertools
import pandas as pd
import numpy as np
import string

sw = set(stopwords.words('english'))
punctuation = set(string.punctuation)
all_names = set([name.lower() for name in names.words()])

def isStopWord(word):
    return (word in sw or word in punctuation) or not word.isalpha() 
or word in all_names

review_words = movie_reviews.words()
filtered = [w.lower() for w in review_words if not isStopWord(w.
lower())]

words = FreqDist(filtered)

texts = []

for fid in movie_reviews.fileids():
    texts.append(" ".join([w.lower() for w in movie_reviews.words(fid) 
if not isStopWord(w.lower()) and words[w.lower()] > 1]))

vectorizer = TfidfVectorizer(stop_words='english')
matrix = vectorizer.fit_transform(texts)
sums = np.array(matrix.sum(axis=0)).ravel()
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ranks = []

for word, val in itertools.izip(vectorizer.get_feature_names(), sums):
    ranks.append((word, val))

df = pd.DataFrame(ranks, columns=["term", "tfidf"])
df = df.sort(['tfidf'])
print df.head()

N = int(.01 * len(df))
df = df.tail(N)

for term, tfidf in itertools.izip(df["term"].values, df["tfidf"].
values):
    print term, ":", tfidf

Social network analysis
Social network analysis studies social relations using network theory. Nodes 
represent participants in a network. Lines between nodes represent relationships. 
Formally, this is called a graph. Due to the constraints of this book, we will only  
have a quick look at a simple graph that comes with the popular NetworkX  
Python library. matplotlib will help with the visualization of the graph.

Install NetworkX with the following commands:

$ pip install networkx
$ pip freeze|grep networkx
networkx==1.9

The import convention for NetworkX is as follows:

import networkx as nx

NetworkX provides a number of sample graphs, which can be listed as follows:

print [s for s in dir(nx) if s.endswith('graph')]



Chapter 9

[ 231 ]

Load the Davis Southern women graph and plot a histogram of the degree  
of connections:

G = nx.davis_southern_women_graph()
plt.figure(1)
plt.hist(nx.degree(G).values())

The resulting histogram is shown as follows:

Draw the graph with node labels as follows:

plt.figure(2)
pos = nx.spring_layout(G)
nx.draw(G, node_size=9)
nx.draw_networkx_labels(G, pos)
plt.show()
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We get the following graph:

This was a short example, but it should be enough to give you a taste of what is 
possible. We can use NetworkX to explore, visualize, and analyze social media 
networks such as Twitter, Facebook, and LinkedIn. The subject matter doesn't  
even have to be a social network, it can be anything that resembles a graph and 
NetworkX understands.

Summary
This was a chapter about textual analysis. We learned that it's a best practice in text 
analysis to get rid of stopwords.

In the bag-of-words model, we created from a document a bag containing words 
found in the document. Using all the word counts, we can build a feature vector  
for each document.

Classification algorithms are a type of machine learning algorithm, which involve 
determining the class of a given item. Naive Bayes classification is a probabilistic 
algorithm based on the Bayes theorem from probability theory and statistics. The 
Bayes theorem states that the posterior probability is proportional to the prior 
probability multiplied by the likelihood.

The next chapter will describe machine learning in more detail. Machine learning  
is a research field that shows a lot of promise. One day, it may even replace human 
labor completely. We will explore what we can do with scikit-learn, the Python 
machine learning package, using weather data as an example.



Predictive Analytics and 
Machine Learning

Predictive analytics and machine learning are hot, new research fields. They are 
new compared to other fields and, without a doubt, we can expect a lot of rapid 
growth. It is even predicted that machine learning will accelerate so fast that within 
mere decades human labor will be replaced by intelligent machines (see http://
en.wikipedia.org/wiki/Technological_singularity). The current state of art is 
far from that utopia. A lot of computing power and data is still needed to make even 
simple decisions, such as determining whether pictures on the Internet contain dogs 
or cats. Predictive analytics uses a variety of techniques, including machine learning 
to make useful predictions, for instance, to determine whether a customer can repay 
his or her loans or identify female customers who are pregnant (see http://www.
forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-
teen-girl-was-pregnant-before-her-father-did/).

To make these predictions, features are extracted from huge volumes of data.  
We mentioned features before—they are also called predictors. Features are input 
variables that can be used to make predictions. In essence, we have features found  
in our data and we are looking for a function that maps the features to a target, 
which may or may not be known. Finding the appropriate function can be hard; 
often, different algorithms and models are grouped together in so called ensembles. 
The output of an ensemble can be a majority vote or an average of a group of models, 
but we can also use a more advanced algorithm to produce the final result. We will 
not be using ensembles in this chapter, but it is something to keep in mind.

http://en.wikipedia.org/wiki/Technological_singularity
http://en.wikipedia.org/wiki/Technological_singularity
http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/
http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/
http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/
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In the previous chapter, we got a taste of machine learning algorithms—the  
Naive Bayes classification algorithm. We can divide machine learning into the 
following categories:

• Supervised learning: This requires us to label training data. For instance,  
if we want to classify spam, we need to provide examples of spam and 
normal e-mail messages.

• Unsupervised learning: This doesn't require human input. This type of 
learning can discover patterns such as clusters in large datasets.

• Reinforcement learning: This is learning without a tutor, but with some sort 
of feedback. For example, a computer can play chess against itself or if you 
remember the War Games movie from 1983 (see http://en.wikipedia.org/
wiki/WarGames), think of tic-tac-toe and thermonuclear warfare.

We will use weather prediction as a running example. In this chapter, we will 
mostly use the Python scikit-learn library. This library has clustering, regression, 
and classification algorithms. However, some machine learning algorithms are not 
covered by scikit-learn so, for those, we will be using other APIs. The topics of this 
chapter are as follows:

• A tour of scikit-learn
• Preprocessing
• Classification with logistic regression
• Classification with support vector machines
• Regression with ElasticNetCV
• Support vector regression
• Clustering with affinity propagation
• Mean Shift
• Genetic algorithms
• Neural networks
• Decision trees

http://en.wikipedia.org/wiki/WarGames
http://en.wikipedia.org/wiki/WarGames
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A tour of scikit-learn
In the previous chapter, Chapter 9, Analyzing Textual Data and Social Media,  
we installed scikit-learn. With the pkg_check.py file in this book's code bundle,  
we can print the following scikit-learn module descriptions:

sklearn version 0.15.0
sklearn.__check_build DESCRIPTION Module to give helpful messages to the 
user that did not compile the scikit properly. PACKAGE CONTENTS _check_
build setup FUNCTI
sklearn.cluster DESCRIPTION The :mod:`sklearn.cluster` module gathers 
popular unsupervised clustering algorithms. PACKAGE CONTENTS _feature_
agglomeration _h
sklearn.covariance DESCRIPTION The :mod:`sklearn.covariance` module 
includes methods and algorithms to robustly estimate the covariance of 
features given a set
sklearn.cross_decomposition 
sklearn.datasets DESCRIPTION The :mod:`sklearn.datasets` module includes 
utilities to load datasets, including methods to load and fetch popular 
reference da
sklearn.decomposition DESCRIPTION The :mod:`sklearn.decomposition` module 
includes matrix decomposition algorithms, including among others PCA, NMF 
or ICA. Most o
sklearn.ensemble DESCRIPTION The :mod:`sklearn.ensemble` module includes 
ensemble-based methods for classification and regression. PACKAGE 
CONTENTS _gradient
sklearn.externals 
sklearn.feature_extraction DESCRIPTION The :mod:`sklearn.feature_
extraction` module deals with feature extraction from raw data. It 
currently includes methods to extra
sklearn.feature_selection DESCRIPTION The :mod:`sklearn.feature_
selection` module implements feature selection algorithms. It currently 
includes univariate filter sel
sklearn.gaussian_process DESCRIPTION The :mod:`sklearn.gaussian_process` 
module implements scalar Gaussian Process based predictions. PACKAGE 
CONTENTS correlation_mo
sklearn.linear_model DESCRIPTION The :mod:`sklearn.linear_model` module 
implements generalized linear models. It includes Ridge regression, 
Bayesian Regression, 
sklearn.manifold 
sklearn.metrics DESCRIPTION The :mod:`sklearn.metrics` module includes 
score functions, performance metrics and pairwise metrics and distance 
computations. 
sklearn.mixture 
sklearn.neighbors DESCRIPTION The :mod:`sklearn.neighbors` module 
implements the k-nearest neighbors algorithm. PACKAGE CONTENTS ball_tree 
base classification
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sklearn.neural_network DESCRIPTION The :mod:`sklearn.neural_network` 
module includes models based on neural networks. PACKAGE CONTENTS rbm 
CLASSES sklearn.base.Bas
sklearn.preprocessing DESCRIPTION The :mod:`sklearn.preprocessing` module 
includes scaling, centering, normalization, binarization and imputation 
methods. PACKAGE
sklearn.semi_supervised DESCRIPTION The :mod:`sklearn.semi_supervised` 
module implements semi-supervised learning algorithms. These algorithms 
utilized small amount
sklearn.svm 
sklearn.tests 
sklearn.tree DESCRIPTION The :mod:`sklearn.tree` module includes decision 
tree-based models for classification and regression. PACKAGE CONTENTS 
_tree _ut
sklearn.utils 

The neural networks module is not very well supported at this moment, so it is 
recommended to use another library for neural networks. Note that there is a 
preprocessing module, which is the topic of the next section.

Preprocessing
In the previous chapter, we did a form of data preprocessing by filtering out 
stopwords. Some machine learning algorithms have trouble with data that is 
not distributed as a Gaussian with a mean of 0 and variance of 1. The sklearn.
preprocessing module takes care of this issue. We will be demonstrating it in this 
section. We will preprocess the meteorological data from the Dutch KNMI institute 
(original data for De Bilt weather station from http://www.knmi.nl/climatology/
daily_data/datafiles3/260/etmgeg_260.zip). The data is just one column of 
the original datafile and contains daily rainfall values. It is stored in the .npy format 
discussed in Chapter 5, Retrieving, Processing, and Storing Data. We can load the data 
into a NumPy array. The values are integers that we have to multiply by 0.1 to get 
the daily precipitation amounts in mm.

The data has the somewhat quirky feature that values below 0.05 mm are quoted 
as -1. We will set those values equal to 0.025 (0.05 divided by 2). Values are missing 
for some days in the original data. We will completely ignore the missing data. We 
can do that because we have a lot of data points as it is. Data is missing for about a 
year at the beginning of the century and for a couple of days later in the century. The 
preprocessing module has an Imputer class with default strategies to deal with 
missing values. Those strategies, however, seem inappropriate in this case. Data 
analysis is about looking through data as if it is a window—window to knowledge. 
Data cleaning and imputing are activities that can make our window nicer to look at. 
However, we should be careful not to distort the original data too much.

http://www.knmi.nl/climatology/daily_data/datafiles3/260/etmgeg_260.zip
http://www.knmi.nl/climatology/daily_data/datafiles3/260/etmgeg_260.zip
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The main feature for the machine learning examples will be an array of day-of-the-year 
values (1 to 366). This should help explain any seasonal effects.

The mean, variance, and output from the Anderson-Darling test (see Chapter 3, 
Statistics and Linear Algebra) are printed as follows:

Rain mean 2.17919594267

Rain variance 18.803443919

Anderson rain (inf, array([ 0.576,  0.656,  0.787,  0.918,  1.092]),  
array([ 15. ,  10. ,   5. ,   2.5,   1. ]))

We can safely conclude that the data doesn't have a 0 mean and variance of 1, 
and it does not conform to a normal distribution. The data has a large percentage 
of 0 values corresponding to days on which it didn't rain. Large amounts of rain 
are increasingly rare (which is a good thing). However, the data distribution is 
completely asymmetric and therefore not Gaussian. We can easily arrange for  
a 0 mean and variance of 1. Scale the data with the scale() function:

scaled = preprocessing.scale(rain)

We now get the required values for the mean and variance, but the data distribution 
remains asymmetric:

Scaled mean 3.41301602808e-17
Scaled variance 1.0
Anderson scaled (inf, array([ 0.576,  0.656,  0.787,  0.918,   
1.092]), array([ 15. ,  10. ,   5. ,   2.5,   1. ]))

Sometimes, we want to convert numerical feature values into Boolean values. This is 
often used in text analysis in order to simplify computation. Perform the conversion 
with the binarize() function:

binarized = preprocessing.binarize(rain)
print np.unique(binarized), binarized.sum()

By default, a new array is created; we could have also chosen to perform the 
operation in-place. The default threshold is at zero, meaning that positive  
values are replaced by 1 and negative values by 0:

[ 0.  1.] 24594.0

The LabelBinarizer class can label integers as classes (in the context of classification):

lb = preprocessing.LabelBinarizer()
lb.fit(rain.astype(int))
print lb.classes_
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The output is a list of integers from 0 to 62. Refer to the preproc.py file in this book's 
code bundle:

import numpy as np
from sklearn import preprocessing
from scipy.stats import anderson

rain = np.load('rain.npy')
rain = .1 * rain
rain[rain < 0] = .05/2
print "Rain mean", rain.mean()
print "Rain variance", rain.var()
print "Anderson rain", anderson(rain)

scaled = preprocessing.scale(rain)
print "Scaled mean", scaled.mean()
print "Scaled variance", scaled.var()
print "Anderson scaled", anderson(scaled)

binarized = preprocessing.binarize(rain)
print np.unique(binarized), binarized.sum()

lb = preprocessing.LabelBinarizer()
lb.fit(rain.astype(int))
print lb.classes_

Classification with logistic regression
Logistic regression is a type of a classification algorithm (see http://en.wikipedia.
org/wiki/Logistic_regression). This algorithm can be used to predict probabilities 
associated with a class or an event occurring. A classification problem with multiple 
classes can be reduced to a binary classification problem. In this simplest case, a high 
probability for one class, means a low probability for another class. Logistic regression 
is based on the logistic function, which has values in the range between 0 and 1—just 
like for probabilities. The logistic function can therefore be used to transform arbitrary 
values into probabilities.

We can define a function that performs classification with logistic regression.  
Create a classifier object as follows:

clf = LogisticRegression(random_state=12)

http://en.wikipedia.org/wiki/Logistic_regression
http://en.wikipedia.org/wiki/Logistic_regression
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The random_state parameter acts like a seed for a pseudorandom generator.  
We touched upon the importance of cross-validation earlier in this book as a technique 
to avoid overfitting. The k-fold cross-validation is a form of cross-validation involving 
k (a small integer number) random data partitions called folds. In k iterations, each fold 
is used once for validation and the rest of the data is used for training. The classes in 
scikit-learn have a default k value of 3, but typically we may want to set it to a higher 
value such as 5 or 10. The results of the iterations can be combined at the end. The 
scikit-learn has a utility KFold class for k-fold cross-validation. Create a KFold object 
with 10 folds as follows:

kf = KFold(len(y), n_folds=10)

Train the data with the fit() method, as follows:

clf.fit(x[train], y[train])

The score() method measures classification accuracy:

scores.append(clf.score(x[test], y[test]))

In this example, we will use the day-of-the-year and previous day rain amount as 
features. Construct an array with features, as follows:

x = np.vstack((dates[:-1], rain[:-1]))

As classes, define first rainless days with 0 amount of rain; second, low amount of 
rain corresponding to -1 in our data and third, rainy days. These three classes can  
be linked to the sign of values in our data:

y = np.sign(rain[1:])

Using this setup, we get an average accuracy of 57 percent. For the scikit-learn sample 
iris dataset, we get an average accuracy of 41 percent (refer to log_regress.py file in 
this book's code bundle):

from sklearn.linear_model import LogisticRegression
from sklearn.cross_validation import KFold
from sklearn import datasets
import numpy as np

def classify(x, y):
    clf = LogisticRegression(random_state=12)
    scores = []
    kf = KFold(len(y), n_folds=10)
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    for train,test in kf:
      clf.fit(x[train], y[train])
      scores.append(clf.score(x[test], y[test]))

    print np.mean(scores)

rain = np.load('rain.npy')
dates = np.load('doy.npy')

x = np.vstack((dates[:-1], rain[:-1]))
y = np.sign(rain[1:])
classify(x.T, y)

#iris example
iris = datasets.load_iris()
x = iris.data[:, :2]
y = iris.target
classify(x, y)

Classification with support vector 
machines
Support vector machines (SVM) can be used for regression—support vector 
regression (SVR)—and classification (SVC). The algorithm was invented by Vladimir 
Vapnik in 1993 (see http://en.wikipedia.org/wiki/Support_vector_machine). 
SVM maps data points to points in multidimensional space. The mapping is performed 
by a so-called kernel function. The kernel function can be linear or nonlinear. The 
classification problem is then reduced to finding a hyperplane or hyperplanes that 
best separate the points into classes. It can be hard to perform the separation with 
hyperplanes, which lead to the emergence of the concept of soft margin. The soft 
margin measures the tolerance for misclassification and is governed by a constant 
commonly denoted with C. Another important parameter is the type of the kernel 
function, which can be:

• A linear function
• A polynomial function
• A radial basis function
• A sigmoid function

http://en.wikipedia.org/wiki/Support_vector_machine
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A grid search can find the proper parameters for a problem. This is a systematic 
method that tries all possible parameter combinations. We will perform a grid search 
with the scikit-learn GridSearchCV class. We give this class a classifier or regressor 
type object with a dictionary. The keys of the dictionary are parameters we want to 
tweak. The values of the dictionary are the corresponding lists of parameter values to 
try. The scikit-learn API has a number of classes that add cross-validation functionality 
to a counterpart class. Cross-validation is turned off by default. Create a GridSearchCV 
object as follows:

clf = GridSearchCV(SVC(random_state=42, max_iter=100), {'kernel':  
['linear', 'poly', 'rbf'], 'C':[1, 10]})

In this line, we specified the number of maximum iterations to not test our patience 
too much. Cross-validation was turned off also to speed up the process. Furthermore, 
we varied the types of kernels and the soft margin parameter.

The preceding code snippet created a grid of two by three for the possible parameter 
variations. If we had more time, we could have created a bigger grid with more 
possible values. We would also set the cv parameter of GridSearchCV to the number 
of folds we want, such as 5 or 10. The maximum iterations should be set to a higher 
value as well. The different kernels can vary wildly in time required to fit. We can 
print more information such as execution time for each combination of parameter 
values with the verbose parameter set to a non-zero integer value. Typically, we 
want to vary the soft-margin parameter by orders of magnitude, for instance,  
from 1 to 10,000. We can achieve this with the NumPy logspace() function.

Applying this classifier, we obtain an accuracy of 56 percent for the weather data 
and an accuracy of 82 percent for the iris sample dataset. The grid_scores_ field of 
GridSearchCV contains scores resulting from the grid search. For the weather data, 
the scores are as follows:

[mean: 0.42879, std: 0.11308, params: {'kernel': 'linear', 'C': 1},
 mean: 0.55570, std: 0.00559, params: {'kernel': 'poly', 'C': 1},
 mean: 0.36939, std: 0.00169, params: {'kernel': 'rbf', 'C': 1},
 mean: 0.30658, std: 0.03034, params: {'kernel': 'linear', 'C': 10},
 mean: 0.41673, std: 0.20214, params: {'kernel': 'poly', 'C': 10},
 mean: 0.49195, std: 0.08911, params: {'kernel': 'rbf', 'C': 10}]

For the iris sample data, we get the following scores:

[mean: 0.80000, std: 0.03949, params: {'kernel': 'linear', 'C': 1},
 mean: 0.58667, std: 0.12603, params: {'kernel': 'poly', 'C': 1},
 mean: 0.80000, std: 0.03254, params: {'kernel': 'rbf', 'C': 1},
 mean: 0.74667, std: 0.07391, params: {'kernel': 'linear', 'C': 10},
 mean: 0.56667, std: 0.13132, params: {'kernel': 'poly', 'C': 10},
 mean: 0.79333, std: 0.03467, params: {'kernel': 'rbf', 'C': 10}]
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Refer to the svm_class.py file in this book's code bundle:

from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from sklearn import datasets
import numpy as np
from pprint import PrettyPrinter

def classify(x, y):
    clf = GridSearchCV(SVC(random_state=42, max_iter=100), {'kernel': 
['linear', 'poly', 'rbf'], 'C':[1, 10]})

    clf.fit(x, y)
    print "Score", clf.score(x, y)
    PrettyPrinter().pprint(clf.grid_scores_)

rain = np.load('rain.npy')
dates = np.load('doy.npy')

x = np.vstack((dates[:-1], rain[:-1]))
y = np.sign(rain[1:])
classify(x.T, y)

#iris example
iris = datasets.load_iris()
x = iris.data[:, :2]
y = iris.target
classify(x, y)

Regression with ElasticNetCV
Elastic net regularization is a method that reduces the danger of overfitting in 
the context of regression (see http://en.wikipedia.org/wiki/Elastic_net_
regularization). The elastic net regularization combines linearly the least absolute 
shrinkage and selection operator (LASSO) and ridge methods. LASSO limits the  
so-called L1 norm or Manhattan distance. This norm measures for a points pair the sum 
of absolute coordinates differences. The ridge method uses a penalty, which is the L1 
norm squared. For regression problems, the goodness-of-fit is often determined with 
the coefficient of determination also called R squared (see http://en.wikipedia.
org/wiki/Coefficient_of_determination). Unfortunately, there are several 
definitions of R squared. Also, the name is a bit misleading, since negative values 
are possible. A perfect fit would have a coefficient of determination of one. Since the 
definitions allow for a wide range of acceptable values, we should aim for a score that 
is as close to one as possible.

http://en.wikipedia.org/wiki/Elastic_net_regularization
http://en.wikipedia.org/wiki/Elastic_net_regularization
http://en.wikipedia.org/wiki/Coefficient_of_determination
http://en.wikipedia.org/wiki/Coefficient_of_determination
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Let's use a 10-fold cross-validation. Define an ElasticNetCV object, as follows:

clf = ElasticNetCV(max_iter=200, cv=10, l1_ratio = [.1, .5, .7,  
.9, .95, .99, 1])

The ElasticNetCV class has an l1_ratio argument with values between 0 and 1. 
If the value is 0, we have only ridge regression; if it is one, we have only LASSO 
regression. Otherwise, we have a mixture. We can either specify a single number  
or a list of numbers to choose from. For the rain data, we get the following score:

Score 0.0527838760942

This score suggests that we are underfitting the data. This can occur for several 
reasons, such as we are not using enough features or the model is wrong. For the 
Boston house price data, with all the present features we get:

Score 0.683143903455

The predict() method gives prediction for new data. We will visualize the quality 
of the predictions with a scatter plot. For the rain data, we obtain the following plot:
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The plot in the previous figure confirms that we have a bad fit (underfitting).  
A straight diagonal line through the origin would indicate a perfect fit. That's  
almost what we get for the Boston house price data:

Refer to the encv.py file in this book's code bundle:

from sklearn.linear_model import ElasticNetCV
import numpy as np
from sklearn import datasets
import matplotlib.pyplot as plt

def regress(x, y, title):
    clf = ElasticNetCV(max_iter=200, cv=10, l1_ratio = [.1, .5,  
.7, .9, .95, .99, 1])

    clf.fit(x, y)
    print "Score", clf.score(x, y)

    pred = clf.predict(x)
    plt.title("Scatter plot of prediction and " + title)
    plt.xlabel("Prediction")
    plt.ylabel("Target")
    plt.scatter(y, pred)
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    # Show perfect fit line
    if "Boston" in title:
        plt.plot(y, y, label="Perfect Fit")
        plt.legend()

    plt.grid(True)
    plt.show()

rain = .1 * np.load('rain.npy')
rain[rain < 0] = .05/2
dates = np.load('doy.npy')

x = np.vstack((dates[:-1], rain[:-1]))
y = rain[1:]
regress(x.T, y, "rain data")

boston = datasets.load_boston()
x = boston.data
y = boston.target
regress(x, y, "Boston house prices")

Support vector regression
As mentioned before, support vector machines can be used for regression. In the  
case of regression, we are using a hyperplane not to separate points, but for a fit.  
A learning curve is a way to visualize the behavior of a learning algorithm. It is a 
plot of training and test scores for a range of train data sizes. Creating a learning 
curve forces us to train the estimator multiple times and is therefore on aggregate 
slow. We can compensate for this by creating multiple concurrent estimator jobs. 
Support vector regression is one of the algorithms that may require scaling.  
We get the following top scores:

Max test score Rain 0.0161004084576

Max test score Boston 0.662188537037

This is similar to the results obtained with the ElasticNetCV class. Many scikit-learn 
classes have an n_jobs parameter for that purpose. As a rule of thumb, we often create 
as many jobs as there are CPUs in our system. The jobs are created using the standard 
Python multiprocessing API. Call the learning_curve() function to perform training 
and testing:

train_sizes, train_scores, test_scores = learning_curve(clf, X, Y,  
n_jobs=ncpus)
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Plot scores by averaging them:

plt.plot(train_sizes, train_scores.mean(axis=1), label="Train  
score")
plt.plot(train_sizes, test_scores.mean(axis=1), '--', label="Test  
score")

The rain data learning curve looks like this:

A learning curve is something we are familiar with in our daily lives. The more 
experience we have, the more we should have learned. In data analysis terms, we 
should have a better score if we add more data. If we have a good training score,  
but a poor test score, this means that we are overfitting. Our model only works on 
the training data. The Boston house price data learning curve looks much better:
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The code is in the sv_regress.py file in this book's code bundle:

import numpy as np
from sklearn import datasets
from sklearn.learning_curve import learning_curve
from sklearn.svm import SVR
from sklearn import preprocessing
import multiprocessing
import matplotlib.pyplot as plt

def regress(x, y, ncpus, title):
    X = preprocessing.scale(x)
    Y = preprocessing.scale(y)
    clf = SVR(max_iter=ncpus * 200)

    train_sizes, train_scores, test_scores = learning_curve(clf,  
X, Y, n_jobs=ncpus) 

    plt.figure()
    plt.title(title)
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    plt.plot(train_sizes, train_scores.mean(axis=1), label="Train  
score")
    plt.plot(train_sizes, test_scores.mean(axis=1), '--',  
label="Test score")
    print "Max test score " + title, test_scores.max()
    plt.grid(True)
    plt.legend(loc='best')
    plt.show()

rain = .1 * np.load('rain.npy')
rain[rain < 0] = .05/2
dates = np.load('doy.npy')

x = np.vstack((dates[:-1], rain[:-1]))
y = rain[1:]
ncpus = multiprocessing.cpu_count()
regress(x.T, y, ncpus, "Rain")

boston = datasets.load_boston()
x = boston.data
y = boston.target
regress(x, y, ncpus, "Boston")

Clustering with affinity propagation
Clustering aims to partition data into groups called clusters. Clustering is usually 
unsupervised in the sense that no examples are given. Some clustering algorithms 
require a guess for the number of clusters, while other algorithms don't. Affinity 
propagation falls in the latter category. Each item in a dataset can be mapped into 
Euclidean space using feature values. Affinity propagation depends on a matrix 
containing Euclidean distances between data points. Since the matrix can quickly 
become quite large, we should be careful not to take up too much memory. The  
scikit-learn library has utilities to generate structured data. Create three data blobs,  
as follows:

x, _ = datasets.make_blobs(n_samples=100, centers=3, n_features=2,  
random_state=10)

Call the euclidean_distances() function to create the aforementioned matrix:

S = euclidean_distances(x)

Cluster using the matrix in order to label the data with the corresponding cluster:

aff_pro = cluster.AffinityPropagation().fit(S)
labels = aff_pro.labels_
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If we plot the cluster, we get the following figure:

Refer to the aff_prop.py file in this book's code bundle:

from sklearn import datasets
from sklearn import cluster
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import euclidean_distances

x, _ = datasets.make_blobs(n_samples=100, centers=3, n_features=2,  
random_state=10)
S = euclidean_distances(x)

aff_pro = cluster.AffinityPropagation().fit(S)
labels = aff_pro.labels_

styles = ['o', 'x', '^']

for style, label in zip(styles, np.unique(labels)):
   print label
   plt.plot(x[labels == label], style, label=label)
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plt.title("Clustering Blobs")
plt.grid(True)
plt.legend(loc='best')
plt.show()

Mean Shift
Mean Shift is another clustering algorithm that doesn't require an estimate  
for the number of clusters. It has been successfully applied to image processing. 
The algorithm tries to iteratively find the maxima of a density function. Before 
demonstrating mean shift, we will average the rain data on a day-of-the-year basis 
using a pandas DataFrame. Create the DataFrame and average its data as follows:

df = pd.DataFrame.from_records(x.T, columns=['dates', 'rain'])
df = df.groupby('dates').mean()

df.plot()

The following plot is the result:

Cluster the data with the mean shift algorithm as follows:

x = np.vstack((np.arange(1, len(df) + 1) ,  
df.as_matrix().ravel()))
x = x.T
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ms = cluster.MeanShift()
ms.fit(x)
labels = ms.predict(x)

If we visualize the data with different line widths and shading for the three resulting 
clusters, the following figure is obtained:

As you can see, we have three clusters based on the average rainfall in mm on the 
day of year (1-366). The complete code is in the mean_shift.py file in this book's 
code bundle:

import numpy as np
from sklearn import cluster
import matplotlib.pyplot as plt
import pandas as pd

rain = .1 * np.load('rain.npy')
rain[rain < 0] = .05/2
dates = np.load('doy.npy')
x = np.vstack((dates, rain))
df = pd.DataFrame.from_records(x.T, columns=['dates', 'rain'])
df = df.groupby('dates').mean()
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df.plot()
x = np.vstack((np.arange(1, len(df) + 1) ,  
df.as_matrix().ravel()))
x = x.T
ms = cluster.MeanShift()
ms.fit(x)
labels = ms.predict(x)

plt.figure()
grays = ['0', '0.5', '0.75']

for gray, label in zip(grays, np.unique(labels)):
    match = labels == label
    x0 = x[:, 0]
    x1 = x[:, 1]
    plt.plot(x0[match], x1[match], lw=label+1, label=label)
    plt.fill_between(x0, x1, where=match, color=gray)

plt.grid(True)
plt.legend()
plt.show()

Genetic algorithms
This is the most controversial section in the book so far. Genetic algorithms are 
based on the biological theory of evolution (see http://en.wikipedia.org/
wiki/Evolutionary_algorithm). This type of algorithm is useful for searching 
and optimization. For instance, we can use it to find the optimal parameters for a 
regression or classification problem.

Humans and other life forms on Earth carry genetic information in chromosomes. 
Chromosomes are frequently modeled as strings. A similar representation is used 
in genetic algorithms. The first step is to initialize the population with random 
individuals and related representation of genetic information. We can also initialize 
with already-known candidate solutions for the problem. After that, we go through 
many iterations called generations. During each generation, individuals are selected 
for mating based on a predefined fitness function. The fitness function evaluates 
how close an individual is to the desired solution.

http://en.wikipedia.org/wiki/Evolutionary_algorithm
http://en.wikipedia.org/wiki/Evolutionary_algorithm
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Two genetic operators generate new genetic information:

• Crossover: This occurs via mating and creates new children. We will explain 
one-point crossover here. This process takes a piece of genetic information 
from one parent and a complementary piece from the other parent. For 
example, if the information is represented by 100 list elements, crossover 
may take the first 80 element of the first parent and the last 20 from the 
other parent. It is possible in genetic algorithms to produce children from 
more than two parents. This is an area under research (refer to Eiben, A. 
E. et al. Genetic algorithms with multi-parent recombination, Proceedings of the 
International Conference on Evolutionary Computation – PPSN III. The Third 
Conference on Parallel Problem Solving from Nature: 78–87. ISBN 3-540-
58484-6, 1994).

• Mutation: This is controlled by a fixed mutation rate. This concept is 
explained in several Hollywood movies and popular culture. Mutation  
is rare and often detrimental or even fatal. However, sometimes mutants  
can acquire desirable traits. In certain cases, the trait can be passed on to 
future generations.

Eventually, the new individuals replace the old population and we can start a  
new iteration. In this example, we will use the Python DEAP library. Install DEAP  
as follows:

$ sudo pip install deap
$ pip freeze|grep deap
deap==1.0.1

Start by defining a Fitness subclass that maximizes fitness:

creator.create("FitnessMax", base.Fitness, weights=(1.0,))

Then, define a template for each individual in the population:

creator.create("Individual", array.array, typecode='d',  
fitness=creator.FitnessMax)

DEAP has the concept of a toolbox, which is a registry of necessary functions.  
Create a toolbox and register the initialization functions, as follows:

toolbox = base.Toolbox()
toolbox.register("attr_float", random.random)
toolbox.register("individual", tools.initRepeat,  
creator.Individual, toolbox.attr_float, 200)
toolbox.register("populate", tools.initRepeat, list,  
toolbox.individual)
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The first function generates floating-point numbers between 0 and 1. The second 
function creates an individual with a list of 200 floating point numbers. The third 
function creates a list of individuals. This list represents the population of possible 
solutions for a search or optimization problem.

In a society, we want "normal" individuals, but also people like Einstein. In Chapter 3,  
Statistics and Linear Algebra, we were introduced to the shapiro() function, which 
performs a normality test. For an individual to be normal, we require that the 
normality test p-value of his or her list to be as high as possible. The following  
code defines the fitness function:

def eval(individual):
    return shapiro(individual)[1],

Let's define the genetic operators:

toolbox.register("evaluate", eval)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.1)
toolbox.register("select", tools.selTournament, tournsize=4)

The following list will give you an explanation about the preceding genetic operators:

• evaluate: This operator measures the fitness of each individual. In this 
example, the p-value of a normality test is used as a fitness score.

• mate: This operator produces children. In this example, it uses  
two-point crossover.

• mutate: This operator changes an individual at random. For a list of  
Boolean values, this means that some values are flipped from True to  
False and vice versa.

• select: This operator selects the individuals that are allowed to mate.

In the preceding code snippet, we specified that we are going to use two-point 
crossover and the probability of an attribute to be flipped. Generate 400 individuals 
as the initial population:

pop = toolbox.populate(n=400)

Now start the evolution process, as follows:

hof = tools.HallOfFame(1)
stats = tools.Statistics(key=lambda ind: ind.fitness.values)
stats.register("max", np.max)

algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=80,  
stats=stats, halloffame=hof)
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The program reports statistics including the maximum fitness for each generation. 
We specified the crossover probability, mutation rate, and maximum generations 
after which to stop. The following is an extract of the displayed statistics report:

gen        nevals        max
0          400           0.000484774
1          245           0.000776807
2          248           0.00135569
…
79         250           0.99826
80         248           0.99826

As you can see, we start out with distributions that are far from normal, but 
eventually we get an individual with the following histogram:

Refer to the gen_algo.py file in this book's code bundle:

import array
import random
import numpy as np
from deap import algorithms
from deap import base
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from deap import creator
from deap import tools
from scipy.stats import shapiro
import matplotlib.pyplot as plt

creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", array.array, typecode='d',  
fitness=creator.FitnessMax)

toolbox = base.Toolbox()
toolbox.register("attr_float", random.random)
toolbox.register("individual", tools.initRepeat,  
creator.Individual, toolbox.attr_float, 200)
toolbox.register("populate", tools.initRepeat, list,  
toolbox.individual)

def eval(individual):
    return shapiro(individual)[1],

toolbox.register("evaluate", eval)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.1)
toolbox.register("select", tools.selTournament, tournsize=4)

random.seed(42)

pop = toolbox.populate(n=400)
hof = tools.HallOfFame(1)
stats = tools.Statistics(key=lambda ind: ind.fitness.values)
stats.register("max", np.max)

algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=80,  
stats=stats, halloffame=hof)

print shapiro(hof[0])[1]
plt.hist(hof[0])
plt.grid(True)
plt.show()
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Neural networks
Artificial Neural Networks (ANN) are models inspired by the animal brain (highly 
evolved animals). A neural network is a network of neurons—units with inputs and 
outputs. For example, the input can be a value related to the pixel of an image and 
the output of a neuron can be passed to another neuron and so on, thus creating a 
multilayered network. Neural networks contain adaptive elements making them 
suitable to deal with nonlinear models and pattern recognition problems. We will 
again try to predict whether it is going to rain based on day-of-the-year and previous 
day values. Let's use the theanets Python library, which can be installed as follows:

$ sudo pip install theanets
$ pip freeze|grep theanets
theanets==0.2.0

One of the technical reviewers encountered an error, which was resolved by 
updating NumPy and SciPy. We first create an Experiment corresponding to 
a neural network and then train the network. Create a network with two input 
neurons and one output neuron:

e = theanets.Experiment(theanets.Regressor,
                        layers=(2, 3, 1),
                        learning_rate=0.1,
                        momentum=0.5,
                        patience=300,
                        train_batches=multiprocessing.cpu_count(),
                        num_updates=500)

The network has a hidden layer with three neurons and uses the standard  
Python multiprocessing API to speed up computations. Train using a training  
and validation dataset:

train = [x[:N], y[:N]]
valid = [x[N:], y[N:]]
e.run(train, valid)

Get predictions for the validation data, as follows:

pred = e.network(x[N:]).ravel()

The scikit-learn library has a utility function, which computes the accuracy of a 
classifier. Compute the accuracy as follows:

print "Pred Min", pred.min(), "Max", pred.max()
print "Y Min", y.min(), "Max", y.max()
print "Accuracy", accuracy_score(y[N:], pred >= .5)
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Due to the nature of neural nets, the output values can vary. The output may look 
like the following:

Pred Min 0.303503170562 Max 0.737862165479
Y Min 0.0 Max 1.0
Accuracy 0.632345426673

Refer to the neural_net.py file in this book's code bundle:

import numpy as np
import theanets
import multiprocessing
from sklearn import datasets
from sklearn.metrics import accuracy_score

rain = .1 * np.load('rain.npy')
rain[rain < 0] = .05/2
dates = np.load('doy.npy')
x = np.vstack((dates[:-1], np.sign(rain[:-1])))
x = x.T

y = np.vstack(np.sign(rain[1:]),)
N = int(.9 * len(x))

e = theanets.Experiment(theanets.Regressor,
                        layers=(2, 3, 1),
                        learning_rate=0.1,
                        momentum=0.5,
                        patience=300,
                        train_batches=multiprocessing.cpu_count(),
                        num_updates=500)

train = [x[:N], y[:N]]
valid = [x[N:], y[N:]]
e.run(train, valid)

pred = e.network(x[N:]).ravel()
print "Pred Min", pred.min(), "Max", pred.max()
print "Y Min", y.min(), "Max", y.max()
print "Accuracy", accuracy_score(y[N:], pred >= .5)
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Decision trees
The if a: else b statement is one of the most common statements in Python 
programming. By nesting and combining such statements, we can build a so-called 
decision tree. This is similar to an old-fashioned flowchart, although flowcharts 
also allow loops. The application of decision trees in machine learning is called 
decision tree learning. The end nodes of the trees in decision tree learning, also 
known as leaves, contain the class labels of a classification problem. Each non-leaf 
node is associated with a Boolean condition involving feature values. The scikit-learn 
implementation uses Gini impurity and entropy as information metrics. These metrics 
measure the probability that an item is misclassified (see http://en.wikipedia.
org/wiki/Decision_tree_learning). Decision trees are easy to understand, use, 
visualize, and verify. To visualize the tree, we will make use of Graphviz, which can be 
downloaded from http://graphviz.org/. Also, we need to install pydot2, as follows:

$ pip install pydot2
$ pip freeze|grep pydot2
pydot 2==1.0.33

Split the rain data into a training and test set as follows, with the scikit-learn  
train_test_split() function:

x_train, x_test, y_train, y_test = train_test_split(x, y,  
random_state=37)

Create DecisionTreeClassifier as follows:

clf = tree.DecisionTreeClassifier(random_state=37)

We will use the scikit-learn RandomSearchCV class to try out a range of parameters. 
Use the class as follows:

params = {"max_depth": [2, None],
              "min_samples_leaf": sp_randint(1, 5),
              "criterion": ["gini", "entropy"]}
rscv = RandomizedSearchCV(clf, params)
rscv.fit(x_train,y_train)

We get the following best score and parameters from the search:

Best Train Score 0.703164923517
Test Score 0.705058763413
Best params {'criterion': 'gini', 'max_depth': 2, 'min_samples_leaf':  
2}

http://en.wikipedia.org/wiki/Decision_tree_learning
http://en.wikipedia.org/wiki/Decision_tree_learning
http://graphviz.org/
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It's good to visualize the decision tree even if it's only to verify our assumptions. 
Create a decision tree figure with the following code:

sio = StringIO.StringIO()
tree.export_graphviz(rscv.best_estimator_, out_file=sio,  
feature_names=['day-of-year','yest'])
dec_tree = pydot.graph_from_dot_data(sio.getvalue())

with NamedTemporaryFile(prefix='rain', suffix='.png',  
delete=False) as f:
    dec_tree.write_png(f.name)
    print "Written figure to", f.name

Refer to the following plot for the end result:

In the non-leaf nodes, we see conditions printed as the top line. If the condition is 
true, we go to the left child; otherwise, we go to the right. When we reach a leaf node, 
the class with highest value, as given in the bottom line, wins. Inspect the dec_tree.
py file in this book's code bundle:

from sklearn.cross_validation import train_test_split
from sklearn import tree
from sklearn.grid_search import RandomizedSearchCV
from scipy.stats import randint as sp_randint
import pydot
import StringIO
import numpy as np
from tempfile import NamedTemporaryFile

rain = .1 * np.load('rain.npy')
rain[rain < 0] = .05/2
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dates = np.load('doy.npy').astype(int)
x = np.vstack((dates[:-1], np.sign(rain[:-1])))
x = x.T

y = np.sign(rain[1:])

x_train, x_test, y_train, y_test = train_test_split(x, y,  
random_state=37)

clf = tree.DecisionTreeClassifier(random_state=37)
params = {"max_depth": [2, None],
              "min_samples_leaf": sp_randint(1, 5),
              "criterion": ["gini", "entropy"]}
rscv = RandomizedSearchCV(clf, params)
rscv.fit(x_train,y_train)

sio = StringIO.StringIO()
tree.export_graphviz(rscv.best_estimator_, out_file=sio,  
feature_names=['day-of-year','yest'])
dec_tree = pydot.graph_from_dot_data(sio.getvalue())

with NamedTemporaryFile(prefix='rain', suffix='.png',  
delete=False) as f:
    dec_tree.write_png(f.name)
    print "Written figure to", f.name

print "Best Train Score", rscv.best_score_
print "Test Score", rscv.score(x_test, y_test)
print "Best params", rscv.best_params_

Summary
This chapter was devoted to predictive modeling and machine learning. These are 
very large fields to cover in one chapter, so you may want to have a look at some of 
the books mentioned in the Preface. Predictive analytics uses a variety of techniques, 
including machine learning, to make useful predictions for instance to determine 
whether it is going to rain tomorrow.

SVM maps the data points to points in multidimensional space. The classification 
problem is then reduced to finding a hyperplane or hyperplanes that best separate 
the points into classes.
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The elastic net regularization combines linearly the LASSO and ridge methods.  
For regression problems, goodness-of-fit is often determined with the coefficient  
of determination also called R squared. Some clustering algorithms require a  
guess for the number of clusters, while other algorithms don't.

The first step in genetic algorithms is to initialize the population with random 
individuals and related representation of genetic information. During each 
generation, individuals are selected for mating based on a predefined fitness 
function. The application of decision trees in machine learning is called  
decision tree learning.

The next chapter, Chapter 11, Environments Outside the Python Ecosystem and  
Cloud Computing, describes interoperability and Cloud possibilities.



Environments Outside  
the Python Ecosystem  
and Cloud Computing

Outside the Python ecosystem, programming languages such as R, C, Java, and 
Fortran are fairly popular. In this chapter, we will delve into the particulars of 
exchanging information with these environments.

Cloud computing aims to deliver computing power as a utility over the Internet. 
This means that we don't need to have a lot of powerful hardware locally. Instead, 
we pay as we go—depending on our current needs. We will also talk about how to 
get our Python code in the Cloud. This is a rapidly evolving industry in a fast-paced 
world. We have many options available, of which we will cover Google App Engine 
and PythonAnywhere. Amazon Web Services (AWS) is deliberately not discussed 
in this book, since other books such as Building Machine Learning Systems with Python, 
Willi Richert and Luis Pedro Coelho, Packt Publishing, mentioned in the Preface, cover the 
topic in great detail. We should also be aware of the Data Science Toolbox at http://
datasciencetoolbox.org/. This is a virtual environment for data analysis based  
on Linux, which can be run locally or on AWS. The instructions given on the Data 
Science Toolbox website are very clear and should help you set up an environment 
with lots of Python packages that we have already installed.

The topics that will be covered in this chapter are as follows:

• Exchanging information with MATLAB/Octave
• Installing rpy2
• Interfacing with R

http://datasciencetoolbox.org/
http://datasciencetoolbox.org/
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• Sending NumPy arrays to Java
• Integrating SWIG and NumPy
• Integrating Boost and Python
• Using Fortran code through f2py
• Setting up Google App Engine
• Running programs on PythonAnywhere
• Working with Wakari

Exchanging information with  
MATLAB/Octave
MATLAB and its open source alternative Octave are popular numerical programs 
and programming languages. Octave and MATLAB have syntax very similar to 
Python's. In fact, you can find websites that compare their syntax (for instance,  
see http://wiki.scipy.org/NumPy_for_Matlab_Users).

Download Octave from http://www.gnu.org/
software/octave/download.html.

The most recent Octave version at the time of writing was 3.8.0. The scipy.
io.savemat() function saves an array in a file compliant to the Octave and 
MATLAB format. The function accepts as parameters the name of the file  
and a dictionary with a name for the array and the values. Refer to the  
octave_demo.py file in this book's code bundle:

import statsmodels.api as sm
from scipy.io import savemat

data_loader = sm.datasets.sunspots.load_pandas()
df = data_loader.data
savemat("sunspots", {"sunspots": df.values})

The preceding code stores sunspots data in a file called sunspots.mat. The extension 
is added automatically. Start the Octave Graphical User Interface or command-line 
interface. Load the file we created and view the data as follows:

octave:1> load sunspots.mat
octave:2> sunspots
sunspots =

http://wiki.scipy.org/NumPy_for_Matlab_Users
http://www.gnu.org/software/octave/download.html
http://www.gnu.org/software/octave/download.html
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   1.7000e+03   5.0000e+00
   1.7010e+03   1.1000e+01
   1.7020e+03   1.6000e+01
…

Installing rpy2
The R programming language is popular among statisticians. It is written in C and 
Fortran and is available under the GNU General Public License. R has support for 
modeling, statistical tests, time-series analysis, classification, visualization, and 
clustering. The Comprehensive R Archive Network (CRAN) and other repository 
websites offer thousands of R packages for various tasks.

Download R from http://www.r-project.org/.

The latest R version as of August 2014 was 3.1.1. The rpy2 package facilitates 
interfacing with R from Python. Install rpy2 as follows with pip:

$ pip install rpy2
$ pip freeze|grep rpy2
rpy2==2.4.2

If you already have rpy2 installed, follow the instructions on 
http://rpy.sourceforge.net/rpy2/doc-dev/html/
overview.html as upgrading is not a straightforward process.

Interfacing with R
R provides a datasets package that contains sample datasets. The morley dataset 
has data from measurements of the speed of light made in 1879. The speed of light 
is a fundamental physical constant and its value is currently known very precisely. 
The data is described at http://stat.ethz.ch/R-manual/R-devel/library/
datasets/html/morley.html. The speed of light value can be found in the scipy.
constants module. The R data is stored in an R dataframe with three columns:

• The experiment number from one to five
• The run number with twenty runs per experiment, bringing the total 

measurements to 100
• The measured speed of light in kilometers per second with 299,000 subtracted

http://www.r-project.org/
http://rpy.sourceforge.net/rpy2/doc-dev/html/overview.html
http://rpy.sourceforge.net/rpy2/doc-dev/html/overview.html
http://stat.ethz.ch/R-manual/R-devel/library/datasets/html/morley.html
http://stat.ethz.ch/R-manual/R-devel/library/datasets/html/morley.html
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The rpy2.robjects.r() function executes R code in a Python environment.  
Load the data as follows:

ro.r('data(morley)')

The pandas library provides an R interface via the pandas.rpy.common module. 
Load the data into a pandas DataFrame as follows:

df = com.load_data('morley')

Let's group the data by experiment with the following code, which creates a five  
by two NumPy array:

samples = dict(list(df.groupby('Expt')))
samples = np.array([samples[i]['Speed'].values for i in samples.
keys()])

When we have data from different experiments, it's interesting to know whether 
the data points of these experiments come from the same distribution. The Kruskal-
Wallis one-way analysis of variance (refer to http://en.wikipedia.org/wiki/
Kruskal%E2%80%93Wallis_one-way_analysis_of_variance) is a statistical method, 
which analyzes samples without making assumptions about their distributions. The 
null hypothesis for this test is that all the medians of the samples are equal. The test is 
implemented in the scipy.stats.kruskal() function. Perform the test as follows:

print "Kruskal", kruskal(samples[0], samples[1], samples[2],  
samples[3], samples[4])

The test statistic and p-value are printed in the following line:

Kruskal (15.022124661246552, 0.0046555484175328015)

We can reject the null hypothesis, but this doesn't tell us which experiment or 
experiments have a deviating median. Further analysis is left as an exercise for  
the reader. If we plot the minimum, maximum, and means for each experiment,  
we get the following figure:

http://en.wikipedia.org/wiki/Kruskal%E2%80%93Wallis_one-way_analysis_of_variance
http://en.wikipedia.org/wiki/Kruskal%E2%80%93Wallis_one-way_analysis_of_variance
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Check out the r_demo.py file in this book's code bundle:

import pandas.rpy.common as com
import rpy2.robjects as ro
from scipy.stats import kruskal
import matplotlib.pyplot as plt
import numpy as np
from scipy.constants import c

ro.r('data(morley)')
df = com.load_data('morley')
df['Speed'] = df['Speed'] + 299000

samples = dict(list(df.groupby('Expt')))
samples = np.array([samples[i]['Speed'].values for i in  
samples.keys()])
print "Kruskal", kruskal(samples[0], samples[1], samples[2],  
samples[3], samples[4])

plt.title('Speed of light')
plt.plot(samples.min(axis=1), 'x', label='min')
plt.plot(samples.mean(axis=1), 'o', label='mean')
plt.plot(np.ones(5) * samples.mean(), '--', label='All mean')
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plt.plot(np.ones(5) * c/1000, lw=2, label='Actual')
plt.plot(samples.max(axis=1), 'v', label='max')
plt.grid(True)
plt.legend()
plt.show()

Sending NumPy arrays to Java
Like Python, Java is a very popular programming language. We installed Java in 
Chapter 8, Working with Databases, as a prerequisite to using Cassandra. To run Java 
code, we need the Java Runtime Environment (JRE). For development, the Java 
Development Kit (JDK) is required.

Jython is an implementation of Python written in Java. Jython code can use any 
Java class. However, Python modules written in C cannot be imported in Jython. 
This is an issue, because many numerical and data analysis Python libraries have 
modules written in C. The JPype package offers a solution and can be downloaded 
from http://pypi.python.org/pypi/JPype1 or http://github.com/originell/
jpype. The most current JPype version at the time of writing was 0.5.5.2. Once you 
have downloaded and unpacked JPype, run the following command:

$ python setup.py install

Start the Java Virtual Machine (JVM) with the following line:

jpype.startJVM(jpype.getDefaultJVMPath())

Create a JPype array JArray with some random values:

values = np.random.randn(7)
java_array = jpype.JArray(jpype.JDouble, 1)(values.tolist())

Print each array element as follows:

for item in java_array:
   jpype.java.lang.System.out.println(item)

At the end, we should shut down the JVM with the following line:

jpype.shutdownJVM()

The following is the code listing from the java_demo.py file in this book's code bundle:

import jpype
import numpy as np
from numpy import random

http://pypi.python.org/pypi/JPype1
http://github.com/originell/jpype
http://github.com/originell/jpype
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jpype.startJVM(jpype.getDefaultJVMPath())

random.seed(44)
values = np.random.randn(7)
java_array = jpype.JArray(jpype.JDouble, 1)(values.tolist())

for item in java_array:
   jpype.java.lang.System.out.println(item)

jpype.shutdownJVM()

Integrating SWIG and NumPy
C is a widespread programming language developed around 1970. Various C dialects 
exist and C has influenced other programming languages. C is not object-oriented.  
This led to the creation of C++, which is an object-oriented language with C features, 
since C is a subset of C++. C and C++ are compiled languages. We need to compile 
source code to create so-called object files. After that, we must link the object files to 
create dynamically shared libraries.

The good thing about integrating C and Python is that a lot of options are available 
to us. The first option is Simplified Wrapper and Interface Generator (SWIG). 
SWIG adds an additional step in the development process, which is the generation 
of glue code between Python and C (or C++). Download SWIG from http://www.
swig.org/download.html. At the time of writing, the most current SWIG version 
was 3.0.2. A prerequisite to installing SWIG is to install Perl Compatible Regular 
Expressions (PCRE). PCRE is a C regular expressions library. Download PCRE from 
http://www.pcre.org/. The most current PCRE version at the time of writing was 
8.35. After unpacking PCRE, run the following commands:

$ ./configure
$ make
$ make install

The last command in the preceding snippet requires root or sudo access. We can 
install SWIG with the same commands. We start by writing a header file containing 
function definitions. Write a header file, which defines the following function:

double sum_rain(int* rain, int len);

http://www.swig.org/download.html
http://www.swig.org/download.html
http://www.pcre.org/
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We will use the preceding function to sum the rain amount values we analyzed in 
the previous chapter. Please refer to the sum_rain.h file in this book's code bundle. 
The function is implemented in the sum_rain.cpp file in this book's code bundle:

double sum_rain(int* rain, int len) {

  double sum = 0.;

  for (int i = 0; i < len; i++){
    if(rain[i] == -1) {
       sum += 0.025;
    } else {
      sum += 0.1 * rain[i];
    }
  }

  return sum;
}

Define the following SWIG interface file (refer to the sum_rain.i file in this book's 
code bundle):

%module sum_rain

%{
  #define SWIG_FILE_WITH_INIT
  #include "sum_rain.h"
%}

%include "/tmp/numpy.i"

%init %{
  import_array();
%}

%apply (int* IN_ARRAY1, int DIM1) {(int* rain, int len)};

%include "sum_rain.h"

The preceding code depends on the numpy.i interface file, which can be found at 
https://github.com/numpy/numpy/blob/master/tools/swig/numpy.i. In this 
example, the file was placed in the /tmp directory, but we can put this file almost 
anywhere. Generate the SWIG glue code with the following command:

$ swig -c++ -python sum_rain.i

https://github.com/numpy/numpy/blob/master/tools/swig/numpy.i
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The preceding step creates a sum_rain_wrap.cxx file. Compile the sum_rain.cpp 
file as follows:

$ g++ -O2 -fPIC -c sum_rain.cpp –I<Python headers dir>

In the previous command, we need to specify the actual Python C headers directory. 
We can find it with the following command:

$ python-config –includes

Therefore, we could have also compiled with the following command:

$ g++ -O2 -fPIC -c sum_rain.cpp –I $(python-config –includes)

The location of this directory will differ depending on Python version and operating 
system (it would be something like /usr/include/python2.7). Compile the 
generated SWIG wrapper file as follows:

$ g++ -O2 -fPIC -c sum_rain_wrap.cxx –I<Python headers dir>  - 
I<numpy-dir>/core/include/

The preceding command depends on the location of the installed NumPy. Locate it 
from the Python shell as follows:

$ python
>>> import numpy as np
>>> np.__file__

The string printed on the screen should contain the Python version, site-packages, 
and end in __init__.pyc. If we strip the last part, we should have the NumPy 
directory. Alternatively, we can use the following code:

>>> from imp import find_module
>>> find_module('numpy')

The final step is to link the object files created by compiling:

$ g++ -lpython -dynamiclib sum_rain.o sum_rain_wrap.o -o _sum_rain.so

The preceding steps will work differently on other operating systems, such as 
Windows, unless we use Cygwin. It is recommended to ask for help on the SWIG 
user mailing lists (http://www.swig.org/mail.html) or StackOverflow, if required.

Test the created library with the swig_demo.py file in this book's code bundle:

from _sum_rain import *
import numpy as np

rain = np.load('rain.npy')

http://www.swig.org/mail.html
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print "Swig", sum_rain(rain)
rain = .1 * rain
rain[rain < 0] = .025
print "Numpy", rain.sum()

If everything went fine and we didn't confuse Python installations, the following 
lines will be printed:

Swig 85291.55
Numpy 85291.55

Integrating Boost and Python
Boost is a C++ library that can interface with Python. Download it from  
http://www.boost.org/users/download/. The latest Boost version at the  
time of writing was 1.56.0. The easiest but also slowest installation method  
involves the following commands:

$ ./bootstrap.sh --prefix=/path/to/boost
$ ./b2 install

The prefix argument specifies the installation directory. In this example, we will 
assume that Boost was installed under the user's home directory in a directory  
called Boost (such as ~/Boost). In this directory, a lib and include directory  
will be created. For Unix and Linux, it is useful to run the following command:

export LD_LIBRARY_PATH=$HOME/Boost/lib:${LD_LIBRARY_PATH}

On Mac OS X, set the following environment variable:

export DYLD_LIBRARY_PATH=$HOME/Boost/lib

Redefine a rain summation function as given in the boost_rain.cpp file in this 
book's code bundle:

#include <boost/python.hpp>

double sum_rain(boost::python::list rain, int len) {

  double sum = 0.;

  for (int i = 0; i < len; i++){
    int val = boost::python::extract<int>(rain[i]);
    if(val == -1) {
       sum += 0.025;

http://www.boost.org/users/download/
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    } else {
      sum += 0.1 * val;
    }
  }

  return sum;
}

BOOST_PYTHON_MODULE(rain) {
    using namespace boost::python;

    def("sum_rain", sum_rain);
}

The function accepts a Python list and the size of the list. Call the function from 
Python, as given in the rain_demo.py file in this book's code bundle:

import numpy as np
from rain import sum_rain

rain = np.load('../rain.npy')
print "Boost", sum_rain(rain.astype(int).tolist(), len(rain))
rain = .1 * rain
rain[rain < 0] = .025
print "Numpy", rain.sum()

We will automate the development process with the Makefile file in this book's  
code bundle:

CC = g++
PYLIBPATH = $(shell python-config --exec-prefix)/lib
LIB = -L$(PYLIBPATH) $(shell python-config --libs) -L ${HOME}/Boost/
lib -lboost_python
OPTS = $(shell python-config --include) -O2 -I${HOME}/Boost/include

default: rain.so
    @python ./rain_demo.py

rain.so: rain.o
    $(CC) $(LIB)  -Wl,-rpath,$(PYLIBPATH) -shared $< -o $@

rain.o: boost_rain.cpp Makefile
    $(CC) $(OPTS) -c $< -o $@

clean:
    rm -rf *.so *.o

.PHONY: default clean
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From the command line, run the following commands:

$ make clean;make

The results are identical as expected:

Boost 85291.55
Numpy 85291.55

Using Fortran code through f2py
Fortran (from Formula Translation System) is a mature programming language 
mostly used for scientific computing. It was developed in the 1950s with newer 
versions emerging such as Fortran 77, Fortran 90, Fortran 95, Fortran 2003, and 
Fortran 2008 (refer to http://en.wikipedia.org/wiki/Fortran). Each version 
added features and new programming paradigms. We will need a Fortran compiler 
for this example. The gfortran compiler is a GNU Fortran compiler, which can be 
downloaded from http://gcc.gnu.org/wiki/GFortranBinaries.

The NumPy f2py module serves as an interface between Fortran and Python.  
If a Fortran compiler is present, we can create a shared library from Fortran code 
using this module. We will write a Fortran subroutine that is intended to sum rain 
amount values as given in the previous examples. Define the subroutine and store it 
in a Python string. After that, we can call the f2py.compile() function to produce a 
shared library from the Fortran code. The end product is in the fort_src.py file in 
this book's code bundle:

from numpy import f2py
fsource = '''
       subroutine sumarray(A, N)
       REAL, DIMENSION(N) :: A
       INTEGER :: N
       RES = 0.1 * SUM(A, MASK = A .GT. 0)
       RES2 = -0.025 * SUM(A, MASK = A .LT. 0)
       print*, RES + RES2
       end 
 '''
f2py.compile(fsource,modulename='fort_sum',verbose=0)

Call the subroutine as given in the fort_demo.py file in this book's code bundle:

import fort_sum
import numpy as np

http://en.wikipedia.org/wiki/Fortran
http://gcc.gnu.org/wiki/GFortranBinaries
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rain = np.load('rain.npy')
fort_sum.sumarray(rain, len(rain))
rain = .1 * rain
rain[rain < 0] = .025
print "Numpy", rain.sum()

The results of Fortran and NumPy agree as expected (we can ignore the last two 
digits printed by the Fortran subroutine):

85291.5547
Numpy 85291.55

Setting up Google App Engine
Cloud computing was briefly mentioned in the introduction to this chapter. Google 
App Engine (GAE) is one of the offerings in that area. GAE puts each application 
made by users in separate sandboxes located somewhere in the Google data centers 
(Google Cloud). GAE automatically scales application resources according to the 
number of requests. GAE supports several Python web frameworks and numerical 
software such as NumPy.

To use GAE, we need a Google account, which is free. Download the GAE tools 
and libraries for various operating systems from https://developers.google.
com/appengine/downloads. From this web page, we can download documentation 
and the GAE Eclipse plugin as well. For developers who use the Eclipse IDE, the 
plugin is recommended. The GAE Standard Development Kit (SDK) provides a 
development environment, which mimics the Google Cloud. GAE at the moment 
supports Python 2.7 only. We can manage GAE apps either with Python scripts or 
using a GUI, which are part of the SDK.

Create a new application with the launcher (navigate to File | New Application). 
We will give the project the name gaedemo. In the corresponding folder, GAE 
creates configuration files and the main.py file, which serves as an entry point for 
the application. If we check https://developers.google.com/appengine/docs/
python/tools/libraries27, we will see that NumPy and matplotlib are supported 
in GAE, although not the most recent versions. The matplotlib functionality is limited 
in GAE; for instance, we can't run the show() function. Add NumPy support as given 
in the app.yaml file in this book's code bundle:

application: gaedemo
version: 1
runtime: python27

https://developers.google.com/appengine/downloads
https://developers.google.com/appengine/downloads
https://developers.google.com/appengine/docs/python/tools/libraries27
https://developers.google.com/appengine/docs/python/tools/libraries27
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api_version: 1
threadsafe: yes

handlers:
- url: /favicon\.ico
  static_files: favicon.ico
  upload: favicon\.ico

- url: .*
  script: main.app

libraries:
- name: webapp2
  version: "2.5.1"
- name: numpy
  version: "1.6.1"

Add some code that uses NumPy as given in the main.py file in this book's  
code bundle:

import webapp2
import numpy as np

class MainHandler(webapp2.RequestHandler):
    def get(self):
        self.response.out.write('Hello world!<br/>')
        np.random.seed(42)
        self.response.out.write('NumPy sum = ' + str(np.random.
randn(7).sum()))

app = webapp2.WSGIApplication([('/', MainHandler)],
                              debug=True)

If we click on the Run button and then click on the Browse button in the GAE launcher, 
we should see a web page with the following output in our web browser:

Hello world!
NumPy sum = 3.64009073018

Running programs on PythonAnywhere
PythonAnywhere is a Cloud service for Python development. The interface is 
completely web-based and simulates the Bash, Python, and IPython consoles.  
The support of Python versions and libraries is more varied compared to GAE.  
The preinstalled Python libraries are listed at https://www.pythonanywhere. 
com/batteries_included/.

https://www.pythonanywhere. com/batteries_included/
https://www.pythonanywhere. com/batteries_included/
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The software version may lag a little behind the latest stable versions available,  
but not as much as GAE. At the time of writing, installing Python software from the 
PythonAnywhere Bash console appears a bit problematic and is not recommended.

It is recommended to upload Python source files instead of using the PythonAnywhere 
environment, as it is less responsive than our local environment. Upload files by 
clicking on the Files tab in the web application. Since rpy2 is supported, upload the  
r_demo.py file from this chapter. To execute the program, click on the Consoles tab 
and then click on the Bash link. Refer to the following screenshot for the end result:

Unfortunately, PythonAnywhere is not able to process the matplotlib show() function, 
so we can only print values on the console.

Working with Wakari
The Cloud service on https://wakari.io/ is similar to the PythonAnywhere website. 
The team behind Wakari has people on board who have actively contributed to SciPy 
and NumPy in the past. Once we have logged in, we are presented with the Wakari 
workspace. On the left in this workspace, we have a file browser that can also be used 
to upload files. On the right, we can open the Bash, Python, or IPython consoles.

You can clearly see the file browser in the following screenshot. Use the file browser 
to upload the r_demo.py file again.

https://wakari.io/
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Run the program in a Python 2.7 console. Refer to the following screenshot for the 
end result:

As we can see, the matplotlib show() function causes an exception to be thrown  
this time.

Summary
We looked over the borders of Python in this chapter. Outside the Python ecosystem, 
programming languages such as R, C, Java, and Fortran are fairly popular. We checked 
out libraries that provide glue to connect Python with external code—rpy2 for R, 
SWIG and Boost for C, JPype for Java, and f2py for Fortran. Cloud computing aims 
to deliver computing power as a utility over the Internet. A brief overview of current 
Cloud computing services specialized in Python, including Google App Engine, 
PythonAnywhere, and Wakari was also given.

The next chapter, Chapter 12, Performance Tuning, Profiling, and Concurrency, gives hints 
on improving performance. Typically, we can speed up Python code by optimizing 
our code by using parallelization or rewriting parts of our code in C. We will discuss 
several profiling tools and concurrency APIs.



Performance Tuning, 
Profiling, and Concurrency

"Premature optimization is the root of all evil"
– Donald Knuth, a renowned computer scientist and mathematician

In the real world, there are more important things than performance, such as features, 
robustness, maintainability, testability, and usability. That's one of the reasons that  
we delayed discussing the topic of performance until the last chapter of the book.  
We will give hints on improving performance with profiling as the key technique.  
For multicore, distributed systems, we will discuss the relevant frameworks too.  
We will discuss the following topics in this chapter:

• Profiling the code
• Installing Cython
• Calling the C code
• Creating a pool process with multiprocessing
• Speeding up embarrassingly parallel for loops with Joblib
• Comparing Bottleneck to NumPy functions
• Performing MapReduce with Jug
• Installing MPI for Python
• IPython Parallel
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Profiling the code
Profiling is about identifying parts of the code that are slow or use a lot of memory. 
We will profile a modified version of the sentiment.py code from Chapter 9, Analyzing 
Textual Data and Social Media. The code is refactored to comply with multiprocessing 
programming guidelines. You will learn about multiprocessing later in this chapter. 
Also, we simplified the stopwords filtering. The third change is to have fewer word 
features as the reduction doesn't impact accuracy. This last change has the most 
impact. The original code ran for about 20 seconds. The new code runs faster than that 
and will serve as the baseline in this chapter. Some changes have to do with profiling 
and will be explained later in this section. Please refer to the prof_demo.py file in this 
book's code bundle:

import random
from nltk.corpus import movie_reviews
from nltk.corpus import stopwords
from nltk import FreqDist
from nltk import NaiveBayesClassifier
from nltk.classify import accuracy
from lprof_hack import profile

@profile
def label_docs():
    docs = [(list(movie_reviews.words(fid)), cat)
            for cat in movie_reviews.categories()
            for fid in movie_reviews.fileids(cat)]
    random.seed(42)
    random.shuffle(docs)

    return docs

@profile
def isStopWord(word):
    return word in sw or len(word) == 1

@profile
def filter_corpus():
    review_words = movie_reviews.words()
    print "# Review Words", len(review_words)
    res = [w.lower() for w in review_words if not  
isStopWord(w.lower())]
    print "# After filter", len(res)

    return res
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@profile
def select_word_features(corpus):
    words = FreqDist(corpus)
    N = int(.02 * len(words.keys()))
    return words.keys()[:N]

@profile
def doc_features(doc):
    doc_words = FreqDist(w for w in doc if not isStopWord(w))
    features = {}
    for word in word_features:
        features['count (%s)' % word] = (doc_words.get(word, 0))
    return features

@profile
def make_features(docs):
    return [(doc_features(d), c) for (d,c) in docs]

@profile
def split_data(sets):
    return sets[200:], sets[:200]

if __name__ == "__main__":
    labeled_docs = label_docs()

    sw = set(stopwords.words('english'))
    filtered = filter_corpus()
    word_features = select_word_features(filtered)
    featuresets = make_features(labeled_docs)
    train_set, test_set = split_data(featuresets)
    classifier = NaiveBayesClassifier.train(train_set)
    print "Accuracy", accuracy(classifier, test_set)
    print classifier.show_most_informative_features()

When we measure time, it helps to have as few processes running as possible. 
However, we can't be sure that nothing is running in the background, so we will  
take the lowest time measured from three measurements with the time command. 
This is a command available on various operating systems and Cygwin. Run the 
command as follows:

$ time python prof_demo.py
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We get a real time, which is the time we would measure using a clock. The user  
and sys times measure the CPU time used by the program. The sys time is the time 
spent in the kernel. On my machine, the following times in seconds were obtained 
(the lowest values were placed between brackets):

Types of time Run 1 Run 2 Run 3
real (13.753) 14.090 13.916
user (13.374) 13.732 13.583
sys 0.424 0.416 (0.373)

Profile the code with the standard Python profiler as follows:

$ python -m cProfile -o /tmp/stat.prof prof_demo.py

The –o switch specifies an output file. We can visualize the profiler output with the 
gprof2dot PyPi package. Install it as follows:

$ pip install gprof2dot
$ pip freeze|grep gprof2dot
gprof2dot==2014.08.05

Create a PNG visualization with the following command:

$ gprof2dot -f pstats /tmp/stat.prof |dot -Tpng -o /tmp/cprof.png

If you get the error dot: command not found, it means that 
you don't have Graphviz installed. You can download Graphviz 
from http://www.graphviz.org/Download.php.

The full image is too large to display here; here is a small excerpt of it:

Query the profiler output as follows:

$ python -m pstats /tmp/stat.prof

http://www.graphviz.org/Download.php


Chapter 12

[ 283 ]

With this command, we enter the profile statistics browser. Strip the filenames from 
the output, sort by time, and show the top 10 times:

/tmp/stat.prof% strip
/tmp/stat.prof% sort time
/tmp/stat.prof% stats 10

Refer to the following screenshot for the end result:

The following is a description of the headers:

Headers Description
ncalls This is the number of calls.
tottime This is the total time spent in the given function  

(excluding time made in calls to subfunctions).
percall This is the quotient of tottime divided by ncalls.
cumtime This is the total time spent in this and all subfunctions 

(from invocation till exit). This figure is accurate even 
for recursive functions.

percall (second) This is the quotient of cumtime divided by  
primitive calls.

The line_profiler is another profiler we can use. This profiler is still in beta, but 
it can display statistics for each line in functions, which have been decorated with 
the @profile decorator. Also, it requires a workaround, which has been included 
in the lprof_hack.py file in this book's code bundle. The workaround is from an 
Internet forum (refer to https://stackoverflow.com/questions/18229628/
python-profiling-using-line-profiler-clever-way-to-remove-profile-
statements). Install and run this profiler with the following commands:

$ pip install --pre line_profiler
$ kernprof.py -l -v prof_demo.py

https://stackoverflow.com/questions/18229628/python-profiling-using-line-profiler-clever-way-to-remove-profile-statements
https://stackoverflow.com/questions/18229628/python-profiling-using-line-profiler-clever-way-to-remove-profile-statements
https://stackoverflow.com/questions/18229628/python-profiling-using-line-profiler-clever-way-to-remove-profile-statements
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The full report is too long to reproduce here; instead, the following is a per-function 
summary (there is some overlap):

Function: label_docs at line 9 Total time: 6.19904 s
Function: isStopWord at line 19 Total time: 2.16542 s
File: prof_demo.py Function: filter_corpus at line 23
Function: select_word_features at line 32 Total time: 4.05266 s
Function: doc_features at line 38 Total time: 12.5919 s
Function: make_features at line 46 Total time: 14.566 s
Function: split_data at line 50 Total time: 3.6e-05 s

Installing Cython
The Cython programming language acts as glue between Python and C/C++.  
With the Cython tools, we can compile plain Python code, which is closer to  
the machine level. The following command will install Cython:

$ pip install cython

The cytoolz package contains utilities created by Cythonizing the handy Python 
toolz package. Install cytoolz as follows:

$ pip install cytoolz
$ pip freeze|grep cytoolz
cytoolz==0.7.0

Just as in cooking shows, we will show the results of Cythonizing before going 
through the process involved (deferred to the next section). The timeit Python 
module measures time. We will use this module to measure different functions. 
Define the following function, which accepts as arguments a short code snippet,  
a function call, and the number of times the code will run:

def time(code, n):
    times = min(timeit.Timer(code, setup=setup).repeat(3, n))

    return round(1000* np.array(times)/n, 3)

We predefine a large setup string containing all the code. The code is in the  
timeits.py file in this book's code bundle (the code uses cython_module  
built on your machine):

import timeit
import numpy as np

setup = '''
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import nltk
import cython_module as cm
import collections
from nltk.corpus import stopwords
from nltk.corpus import movie_reviews
from nltk.corpus import names
import string
import pandas as pd
import cytoolz

sw = set(stopwords.words('english'))
punctuation = set(string.punctuation)
all_names = set([name.lower() for name in names.words()])
txt = movie_reviews.words(movie_reviews.fileids()[0])

def isStopWord(w):
    return w in sw or w in punctuation

def isStopWord2(w):
    return w in sw or w in punctuation or not w.isalpha()

def isStopWord3(w):
    return w in sw or len(w) == 1 or not w.isalpha() or w in  
all_names

def isStopWord4(w):
    return w in sw or len(w) == 1

def freq_dict(words):
    dd = collections.defaultdict(int)

    for word in words:
        dd[word] += 1

    return dd

def zero_init():
    features = {}

    for word in set(txt):
        features['count (%s)' % word] = (0)

def zero_init2():
    features = {}
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    for word in set(txt):
        features[word] = (0)

keys = list(set(txt))

def zero_init3():
    features = dict.fromkeys(keys, 0)

zero_dict = dict.fromkeys(keys, 0)

def dict_copy():
    features = zero_dict.copy()
'''

def time(code, n):
    times = min(timeit.Timer(code, setup=setup).repeat(3, n))

    return round(1000* np.array(times)/n, 3)

if __name__ == '__main__':
    print "Best of 3 times per loop in milliseconds"
    n = 10
    print "zero_init ", time("zero_init()", n)
    print "zero_init2", time("zero_init2()", n)
    print "zero_init3", time("zero_init3()", n)
    print "dict_copy ", time("dict_copy()", n)
    print

    n = 10**2
    print "isStopWord ", time('[w.lower() for w in txt if not  
isStopWord(w.lower())]', n)
    print "isStopWord2", time('[w.lower() for w in txt if not  
isStopWord2(w.lower())]', n)
    print "isStopWord3", time('[w.lower() for w in txt if not  
isStopWord3(w.lower())]', n)
    print "isStopWord4", time('[w.lower() for w in txt if not  
isStopWord4(w.lower())]', n)
    print "Cythonized isStopWord", time('[w.lower() for w in txt  
if not cm.isStopWord(w.lower())]', n)
    print "Cythonized filter_sw()", time('cm.filter_sw(txt)', n)
    print



Chapter 12

[ 287 ]

    print "FreqDist", time("nltk.FreqDist(txt)", n)
    print "Default dict", time('freq_dict(txt)', n)
    print "Counter", time('collections.Counter(txt)', n)
    print "Series", time('pd.Series(txt).value_counts()', n)
    print "Cytoolz", time('cytoolz.frequencies(txt)', n)
    print "Cythonized freq_dict", time('cm.freq_dict(txt)', n)

So, we have several isStopword() function versions with the following running 
times in milliseconds:

isStopWord  0.843
isStopWord2 0.902
isStopWord3 0.963
isStopWord4 0.869
Cythonized isStopWord 0.924
Cythonized filter_sw() 0.887

For comparison, we also have the time the running time of a plain pass statement. 
The Cythonized isStopWord() is based on the isStopWord3() function (the most 
elaborate filter). If we look at the doc_features() function in prof_demo.py, it 
becomes obvious that we shouldn't go over each word feature. Instead, we should 
just intersect the set of words in a document and the words chosen as features. All 
the other word counts can be safely set to zero. In fact, it's best if we initialize all the 
values to zero once and copy this dictionary. For the corresponding functions, we get 
the following execution times:

zero_init  0.61
zero_init2 0.555
zero_init3 0.017
dict_copy  0.011

Another improvement is to use the Python defaultdict class instead of the NLTK 
FreqDist class. The related routines have the following run times:

FreqDist 2.206
Default dict 0.674
Counter 0.79
Series 7.006
Cytoolz 0.542
Cythonized freq_dict 0.616

As we can see, the Cythonized versions are consistently faster, although not by much.
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Calling C code
We can call C functions from Cython. The C string strlen() function is the equivalent 
of the Python len() function. Call this function from a Cython .pyx file by importing 
it as follows:

from libc.string cimport strlen

We can then call strlen() from somewhere else in the .pyx file. The .pyx file  
can contain any Python code. Have a look at the cython_module.pyx file in this 
book's code bundle:

from collections import defaultdict
from nltk.corpus import stopwords
from nltk.corpus import names
from libc.string cimport strlen

sw = set(stopwords.words('english'))
all_names = set([name.lower() for name in names.words()])

def isStopWord(w):
    return w in sw or strlen(w) == 1 or not w.isalpha() or w in  
all_names

def filter_sw(words):
    return [w.lower() for w in words if not isStopWord(w.lower())]

def freq_dict(words):
    dd = defaultdict(int)

    for word in words:
        dd[word] += 1

    return dd

To compile this code we need a setup.py file with the following contents:

from distutils.core import setup
from Cython.Build import cythonize

setup(
    ext_modules = cythonize("cython_module.pyx")
)

Compile the code with the following command:

$ python setup.py build_ext –inplace
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We can now modify the sentiment analysis program to call the Cython functions. We 
will also add the improvements mentioned in the previous section. As we are going 
to use some of the functions over and over again, these functions were extracted into 
the core.py file in this book's code bundle. Check out the cython_demo.py file in 
this book's code bundle (the code uses cython_module built on your machine):

… NLTK imports omitted …
import cython_module as cm
import cytoolz
from core import label_docs
from core import filter_corpus
from core import split_data

def select_word_features(corpus):
    words = cytoolz.frequencies(filtered)
    sorted_words = sorted(words, key=words.get)
    N = int(.02 * len(sorted_words))

    return sorted_words[-N:]

def match(a, b):
    return set(a.keys()).intersection(b)

def doc_features(doc):
    doc_words = cytoolz.frequencies(cm.filter_sw(doc))

    # initialize to 0
    features = zero_features.copy()

    word_matches = match(doc_words, word_features)

    for word in word_matches:
        features[word] = (doc_words[word])

    return features

def make_features(docs):
    return [(doc_features(d), c) for (d,c) in docs]

if __name__ == "__main__":
    labeled_docs = label_docs()
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    filtered = filter_corpus()
    word_features = select_word_features(filtered)
    zero_features = dict.fromkeys(word_features, 0)
    featuresets = make_features(labeled_docs)
    train_set, test_set = split_data(featuresets)
    classifier = NaiveBayesClassifier.train(train_set)
    print "Accuracy", accuracy(classifier, test_set)
    print classifier.show_most_informative_features()

The following table summarizes the results of the time command (lowest values 
were placed between brackets):

Types of time Run 1 Run 2 Run 3
real (9.974) 9.995 10.024
user (9.618) 9.682 9.713
sys 0.404 0.365 (0.36)

Creating a process pool with 
multiprocessing
Multiprocessing is a standard Python module that targets machines with multiple 
processors. Multiprocessing works around the Global Interpreter Lock (GIL) by 
creating multiple processes.

The GIL locks Python bytecode so that only 
one thread can access it.

Multiprocessing supports process pools, queues, and pipes. A process pool is a 
pool of system processes that can execute a function in parallel. Queues are data 
structures that are usually used to store tasks. Pipes connect different processes in 
such a way that the output of one process becomes the input of another.

Windows doesn't have an os.fork() function, so we need to make 
sure that outside the if __name__ == "__main__" block only 
imports and def blocks are defined.

Create a pool and register a function as follows:

   p = mp.Pool(nprocs)
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The pool has a map() method that is the parallel equivalent of the Python  
map() function:

p.map(simulate, [i for i in xrange(10, 50)])

We will simulate the movement of a particle in one dimension. The particle performs 
a random walk and we are interested in computing the average end position of the 
particle. We repeat this simulation for different walk lengths. The calculation itself is 
not important. The important part is to compare the speedup with multiple processes 
versus a single process. We will plot the speedup with matplotlib. The full code is in 
the multiprocessing_sim.py file in this book's code bundle:

from numpy.random import random_integers
from numpy.random import randn
import numpy as np
import timeit
import argparse
import multiprocessing as mp
import matplotlib.pyplot as plt

def simulate(size):
    n = 0
    mean = 0
    M2 = 0

    speed = randn(10000)

    for i in xrange(1000): 
        n = n + 1
        indices = random_integers(0, len(speed)-1, size=size)
        x = (1 + speed[indices]).prod()
        delta = x - mean
        mean = mean + delta/n
        M2 = M2 + delta*(x - mean)

    return mean

def serial():
    start = timeit.default_timer()

    for i in xrange(10, 50):
        simulate(i)

    end = timeit.default_timer() - start
    print "Serial time", end

    return end
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def parallel(nprocs):
    start = timeit.default_timer()
    p = mp.Pool(nprocs)
    print nprocs, "Pool creation time", timeit.default_timer() -  
start

    p.map(simulate, [i for i in xrange(10, 50)])
    p.close()
    p.join()

    end = timeit.default_timer() - start
    print nprocs, "Parallel time", end
    return end

if __name__ == "__main__":
    ratios = []
    baseline = serial()

    for i in xrange(1, mp.cpu_count()):
        ratios.append(baseline/parallel(i))

    plt.xlabel('# processes')
    plt.ylabel('Serial/Parallel')
    plt.plot(np.arange(1, mp.cpu_count()), ratios)
    plt.grid(True)
    plt.show()

If we take the speedup values for process pool sizes ranging from 1 to 8 (the number 
of processors is hardware dependent), we get the following figure:
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Amdahl's law (see http://en.wikipedia.org/wiki/Amdahl%27s_law) best 
describes the speedups due to parallelization. This law predicts the maximum possible 
speedup. The number of processes limits the absolute maximum speedup. However, 
as we can see in the preceding plot, we don't get a doubling of speed with two 
processes nor does using three processes triple the speed, but we come close. Some 
parts of any given Python code may be impossible to parallelize. For example, we may 
need to wait for a resource to become available or we may be performing a calculation 
that has to be performed sequentially. We also have to take into account overhead 
from parallelization setup and related interprocess communication. Amdahl's law 
states that there is a linear relationship between the inverse of the speedup, the inverse 
of the number of processes, and the portion of the code, which cannot be parallelized.

Speeding up embarrassingly parallel for 
loops with Joblib
Joblib is a Python library created by the developers of scikit-learn. Its main mission 
is to improve the performance of long-running Python functions. Joblib achieves 
the improvements through caching and parallelization using multiprocessing or 
threading under the hood. Install Joblib as follows:

$ pip install joblib
$ pip freeze|grep joblib
joblib==0.8.2

We will reuse the code from the previous example only changing the parallel() 
function. Refer to the joblib_demo.py file in this book's code bundle:

def parallel(nprocs):
    start = timeit.default_timer()
    Parallel(nprocs)(delayed(simulate)(i) for i in xrange(10, 50))

    end = timeit.default_timer() - start
    print nprocs, "Parallel time", end
    return end

http://en.wikipedia.org/wiki/Amdahl%27s_law
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Refer to the following plot for the end result (the number of processors is  
hardware-dependent):

Comparing Bottleneck to NumPy 
functions
Bottleneck is a set of functions inspired by NumPy and SciPy, but written in Cython 
with high performance in mind. Bottleneck provides separate Cython functions for 
each combination of array dimensions, axis, and data type. This is not shown to the 
end user and the limiting factor for Bottleneck is to determine which Cython function 
to execute. Install Bottleneck as follows:

$ pip install bottleneck

We will compare the execution times for the numpy.median() and scipy.stats.
rankdata() functions in relation to their Bottleneck counterparts. It can be useful to 
determine the Cython function manually before using it in a tight loop or frequently 
called function. Print the name of the Bottleneck median() function as follows:

func, _ = bn.func.median_selector(a, axis=0)
print "Bottleneck median func name", func
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For the rankdata() function, we can do the following:

func, _ = bn.func.rankdata_selector(a, axis=0)
print "Bottleneck rankdata func name", func

This program is given in the bn_demo.py file in this book's code bundle:

import bottleneck as bn
import numpy as np
import timeit

setup = '''
import numpy as np
import bottleneck as bn
from scipy.stats import rankdata

np.random.seed(42)
a = np.random.randn(30)
'''
def time(code, setup, n):
    return timeit.Timer(code, setup=setup).repeat(3, n)

if __name__ == '__main__':
    n = 10**3
    print n, "pass", max(time("pass", "", n))
    print n, "min np.median", min(time('np.median(a)', setup, n))
    print n, "min bn.median", min(time('bn.median(a)', setup, n))
    a = np.arange(7)
    print "Median diff", np.median(a) - bn.median(a)
    func, _ = bn.func.median_selector(a, axis=0)
    print "Bottleneck median func name", func

    print n, "min scipy.stats.rankdata", min(time('rankdata(a)',  
setup, n))
    print n, "min bn.rankdata", min(time('bn.rankdata(a)', setup,  
n))
    func, _ = bn.func.rankdata_selector(a, axis=0)
    print "Bottleneck rankdata func name", func

The following is the output with running times and function names:

1000 pass 1.4066696167e-05
1000 min np.median 0.0271320343018
1000 min bn.median 0.00440287590027
Median diff 0.0
Bottleneck median func name <built-in function median_1d_int64_axis0>
1000 min scipy.stats.rankdata 0.0171868801117
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1000 min bn.rankdata 0.00528407096863
Bottleneck rankdata func name <built-in function  
rankdata_1d_int64_axis0>

Clearly, Bottleneck is very fast; unfortunately, due to its setup, Bottleneck doesn't 
have that many functions yet. The following table lists the implemented functions 
from http://pypi.python.org/pypi/Bottleneck:

Category Functions

NumPy/SciPy median, nanmedian, rankdata, ss, nansum, nanmin, nanmax, 
nanmean, nanstd, nanargmin, and nanargmax

Functions nanrankdata, nanvar, partsort, argpartsort, replace, nn, 
anynan, and allnan

Moving window
move_sum, move_nansum, move_mean, move_nanmean, move_
median, move_std, move_nanstd, move_min, move_nanmin, 
move_max, and move_nanmax

Performing MapReduce with Jug
Jug is a distributed computing framework that uses tasks as central parallelization 
units. As backends, Jug uses filesystems or the Redis server. The Redis server was 
discussed in Chapter 8, Working with Databases. Install Jug with the following command:

$ pip install jug

MapReduce (see http://en.wikipedia.org/wiki/MapReduce) is a distributed 
algorithm used to process large datasets with a cluster of computers. The algorithm 
consists of a Map and a Reduce phase. During the Map phase, data is processed in 
a parallel fashion. The data is split up in parts and on each part, filtering or other 
operations are performed. In the Reduce phase, the results from the Map phase are 
aggregated, for instance, to create a statistics report.

http://pypi.python.org/pypi/Bottleneck
http://en.wikipedia.org/wiki/MapReduce
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If we have a list of text files, we can compute word counts for each file. This can be 
done during the Map phase. At the end, we can combine individual word counts 
into a corpus word frequency dictionary. Jug has MapReduce functionality, which is 
demonstrated in the jug_demo.py file in this book's code bundle (the code depends 
on the cython_module artifact):

import jug.mapreduce
from jug.compound import CompoundTask
import cython_module as cm
import cytoolz
import cPickle

def get_txts():
    return [(1, 'Lorem ipsum dolor sit amet, consectetur  
adipiscing elit.'), (2, 'Donec a elit pharetra, malesuada massa  
vitae, elementum dolor.'), (3, 'Integer a tortor ac mi vehicula  
tempor at a nunc.')]

def freq_dict(file_words):
    filtered = cm.filter_sw(file_words[1].split())

    fd = cytoolz.frequencies(filtered)

    return fd

def merge(left, right):
    return cytoolz.merge_with(sum, left, right)

merged_counts = CompoundTask(jug.mapreduce.mapreduce, merge, freq_
dict, get_txts(), map_step=1)

In the preceding code, the merge() function is called during the Reduce phase 
and the freq_dict() function is called during the Map phase. We define a Jug 
CompoundTask consisting of multiple subtasks. Before we run this code, we need  
to start a Redis server. Perform MapReduce by issuing the following command:

$ jug execute jug_demo.py --jugdir=redis://127.0.0.1/&

The ampersand (&) at the end means that this command runs in the background.  
We can issue the command from multiple computers in this manner, if the Redis 
server is accessible in the network. In this example, Redis only runs on the local 
machine (127.0.0.1 is the IP address of the localhost). However, we can still run  
the command multiple times locally. We can check the status of the Jug command  
as follows:

$ jug status jug_demo.py
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By default, Jug stores data in the current working directory if we don't specify the 
jugdir option. Clean the Jug directory with the following command:

$ jug cleanup jug_demo.py

To query Redis and perform the rest of the analysis, we will use another program.  
In this program, initialize Jug as follows:

jug.init('jug_demo.py', 'redis://127.0.0.1/')
import jug_demo

The following line gets the results from the Reduce phase:

words = jug.task.value(jug_demo.merged_counts)

The rest of the code is given in the jug_redis.py file in this book's code bundle:

import jug

def main():
    jug.init('jug_demo.py', 'redis://127.0.0.1/')
    import jug_demo
    print "Merged counts", jug.task.value(jug_demo.merged_counts)

if __name__ == "__main__":
    main()

Installing MPI for Python
The Message Passing Interface (MPI) (see http://en.wikipedia.org/wiki/
Message_Passing_Interface) is a standard protocol developed by experts to work 
on a broad assortment of distributed machines. Originally, in the '90s, MPI was used to 
write programs in Fortran and C. MPI is independent of hardware and programming 
languages. MPI functions include the send and receive operations, MapReduce 
functionality, and synchronization. MPI has point-to-point functions involving two 
processors and operations involving all processors. MPI has bindings for several 
programming languages, including Python. Download MPI from http://www.
open-mpi.org/software/ompi/v1.8/ 1.8.1. MPI 1.8.1 was the latest MPI version 
at the time of writing. We can check on the website whether there is a newer version 
available. Installing MPI can take a while (nearly 30 minutes). The following are the 
commands involved, assuming that we install it in the /usr/local directory:

$ ./configure --prefix=/usr/local
$ make all
$ sudo make install

http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.open-mpi.org/software/ompi/v1.8/ 1.8.1
http://www.open-mpi.org/software/ompi/v1.8/ 1.8.1
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Install Python bindings for MPI as follows:

$ pip install mpi4py
$ pip freeze|grep mpi4py
mpi4py==1.3.1

IPython Parallel
IPython Parallel is the IPython API for parallel computing. We will set it up to use 
MPI for message passing. We may have to set environment variables as follows:

$ export LC_ALL=en_US.UTF-8
$ export LANG=en_US.UTF-8

Issue the following command at the command line:

$ ipython profile create --parallel --profile=mpi

The preceding command will create a file in our home directory, which can be found 
at .ipython/profile_mpi/iplogger_config.py.

Add the following line in this file:

c.IPClusterEngines.engine_launcher_class = 'MPIEngineSetLauncher'

Start a cluster that uses the MPI profile as follows:

$ ipcluster start -–profile=mpi --engines=MPI --debug

The preceding command specifies that we are using the mpi profile and MPI engine 
with debug-level logging. We can now interact with the cluster from an IPython 
Notebook. Start a notebook with plotting enabled and with NumPy, SciPy, and 
matplotlib automatically imported as follows:

$ ipython notebook --profile=mpi --log-level=DEBUG --pylab inline

The preceding command uses the mpi profile with debug log level. The notebook 
for this example is stored in the IPythonParallel.ipynb file in this book's code 
bundle. Import the IPython Parallel Client class and the statsmodels.api module 
as follows:

  In [1]:from IPython.parallel import Client
  import statsmodels.api as sm
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Load the sunspots data and calculate the mean:

  In [2]: data_loader = sm.datasets.sunspots.load_pandas()
  vals = data_loader.data['SUNACTIVITY'].values
  glob_mean = vals.mean()
  glob_mean

The following will be output:

Out [2]: 49.752103559870541

Create a client as follows:

In [3]: c = Client(profile='mpi')

Create a view to the clients with the following line:

In [4]: view=c[:]

IPython has the concept of magics. These are special commands specific to  
IPython notebooks. Enable magics as follows:

In [5]: view.activate()

Load the mpi_ipython.py file in this book's code bundle:

from mpi4py import MPI
from numpy.random import random_integers
from numpy.random import randn
import numpy as np
import statsmodels.api as sm
import bottleneck as bn
import logging

def jackknife(a, parallel=True):
    data_loader = sm.datasets.sunspots.load_pandas()
    vals = data_loader.data['SUNACTIVITY'].values

    func, _ = bn.func.nanmean_selector(vals, axis=0)
    results = []

    for i in a:
        tmp = np.array(vals.tolist())
        tmp[i] = np.nan
        results.append(func(tmp))
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    results = np.array(results)

    if parallel:
        comm = MPI.COMM_WORLD
        rcvBuf = np.zeros(0.0, 'd')
        comm.gather([results, MPI.DOUBLE], [rcvBuf, MPI.DOUBLE])

   return results

if __name__ == "__main__":
    skiplist = np.arange(39, dtype='int')
    print jackknife(skiplist, False)

The preceding program contains a function, which performs jackknife resampling. 
Jackknife resampling is a type of resampling where we omit one of the observations 
in the sample and then calculate the statistical estimator we are interested in. In this 
case, we are interested in the mean. We leave one observation out by setting it to 
NumPy NaN. Then, we call the Bottleneck nanmean() function on the new sample. 
The following is the load command:

In [6]: view.run('mpi_ipython.py')

Next, we split and spread an array with all the indices of the sunspots array:

In [7]: view.scatter('a',np.arange(len(vals),dtype='int'))

The a array can be displayed in the notebook as follows:

In [8]: view['a']

Here is the output of the preceding command:

Out[8]:[array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12,  
13, 14, 15, 16,  17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,  
30, 31, 32, 33,  34, 35, 36, 37, 38]), … TRUNCATED …]

Call the jackknife() function on all the clients:

In [9]: %px means = jackknife(a)

Once all the worker processes are done, we can view the result:

In [10]: view['means']
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The result is a list of as many processes as we started. Each process returns a NumPy 
array containing means calculated by jackknife resampling. This structure is not very 
useful, so transform it into a flat list:

In [11]: all_means = []

for v in view['means']:
    all_means.extend(v)

mean(all_means)

You will get the following output:

Out [11]: 49.752103559870577

We can also compute the standard deviation, but that is easy so we will skip it.  
It's much more interesting to plot a histogram of the jackknifed means:

In [13]: hist(all_means, bins=sqrt(len(all_means)))

Refer to the following plot for the end result:

For troubleshooting, we can use the following line that displays error messages from 
the worker processes:

In [14]: [(k, c.metadata[k]['started'], c.metadata[k]['pyout'],  
c.metadata[k]['pyerr']) for k in c.metadata.keys()]
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Summary
In this chapter, we tuned the performance of the sentiment analysis script from 
Chapter 9, Analyzing Textual Data and Social Media. Using profiling, Cython, and 
various improvements, we doubled the execution speed of that example. We also 
used multiprocessing, Joblib, Jug, and MPI via IPython Parallel to take advantage  
of parallelization.

This was the last chapter of this book. After the appendices and the index, there  
is only the back cover. Of course, the learning process will not stop. Change the  
code to suit your needs. It's always nice to have a private data analysis project,  
even if it is just for practice. If you can't think of a project, join a competition on 
http://www.kaggle.com/. They have several competitions with nice prizes.  
If you are interested in NumPy, you can look forward to the second edition  
of NumPy Cookbook, Ivan Idris, Packt Publishing, which is planned for 2015.

http://www.kaggle.com/




Key Concepts
This appendix gives a brief overview and glossary of technical concepts used 
throughout the book.

Amdahl's law predicts the maximum possible speedup due to parallelization.  
The number of processes limits the absolute maximum speedup. Some parts 
of any given Python code might be impossible to parallelize. We also have to 
take into account overhead from parallelization setup and related interprocess 
communication. Amdahl's law states that there is a linear relationship between  
the inverse of the speedup, the inverse of the number of processes, and the  
portion of the code that cannot be parallelized.

ARMA models combine autoregressive and moving average models. They are  
used to forecast future values of time series.

Artificial Neural Networks (ANN) are models inspired by the animal brain.  
A neural network is a network of neurons—units with inputs and outputs.  
The output of a neuron can be passed to a neuron and so on, thus creating a 
multilayered network. Neural networks contain adaptive elements, making  
them suitable to deal with nonlinear models and pattern recognition problems.

Augmented Dickey Fuller (ADF) test is a statistical test related to cointegration.

Autocorrelation is the correlation within a dataset and can indicate a trend. For 
example, if we have a lag of one period, we can check whether the previous value 
influences the current value. For that to be true, the autocorrelation value has to  
be pretty high.

Autocorrelation plots graph autocorrelations of time series data for different lags. 
Autocorrelation is the correlation of a time series with the same lagged time series.
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The autoregressive model is a model that uses (usually linear) regression to forecast 
future values of a time series using previous values. Autoregressive models are a 
special case of the ARMA models. They are equivalent to ARMA models with zero 
moving average components.

The bag-of-words model is a simplified model of text, in which the text is represented 
by a bag of words. In this representation, the order of the words is ignored. Typically, 
word counts or the presence of certain words are used as features in this model.

Bubble charts are an extension of the scatter plot. In a bubble chart, the value of a 
third variable is represented by the size of the bubble surrounding a data point.

Cassandra Query Language (CQL) is a query language for Apache Cassandra with  
a syntax similar to SQL.

Cointegration is similar to correlation and is a statistical characteristic of time series 
data. Cointegration is a measure of how synchronized two time series are.

Clustering aims to partition data into groups called clusters. Clustering is usually 
unsupervised in the sense that the training data is not labeled. Some clustering 
algorithms require a guess for the number of clusters, while other algorithms don't.

CSS (Cascading Style Sheets) is a language used to style elements of a web page. 
CSS is maintained and developed by the World Wide Web Consortium.

CSS selectors are rules used to select content in a web page.

Character codes are included in NumPy for backward compatibility with Numeric. 
Numeric is the predecessor of NumPy.

Data type objects are instances of the numpy.dtype class. They provide an  
object-oriented interface for manipulation of NumPy data types.

Eigenvalues are scalar solutions to the equation Ax = ax, where A is a two-dimensional 
matrix and x is a one-dimensional vector.

Eigenvectors are vectors corresponding to eigenvalues.

The exponential moving average is a type of moving average with exponentially 
decreasing weights with time.

Fast Fourier Transform (FFT) is a fast algorithm to compute the Fourier transform. 
FFT is O(N log N), which is a huge improvement over older algorithms.

Filtering is a type of signal-processing technique, which involves removing or 
suppressing part of the signal. Many filter types exist including the median and 
Wiener filter.
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Fourier analysis is based on the Fourier series named after the mathematician 
Joseph Fourier. The Fourier series is a mathematical method to represent functions  
as an infinite series of sine and cosine terms. The functions in question can be real  
or complex valued.

Genetic algorithms are based on the biological theory of evolution. This type of 
algorithms is useful for searching and optimization.

Graphical Processor Units (GPUs) are specialized circuits used to display 
graphics efficiently. Recently, GPUs have been used to perform massively parallel 
computations (for instance, to train neural networks).

The Hierarchical Data Format (HDF) is a specification and technology for the storage 
of big numerical data. The HDF group maintains a related software library.

The Hilbert-Huang transform is a mathematical algorithm to decompose a signal. 
This method can be used to detect periodic cycles in time series data. It was used 
successfully to determine sunspot cycles.

HyperText Markup Language (HTML) is the fundamental technology used to  
create web pages. It defines tags for media, text, and hyperlinks.

The Internet Engineering Task Force (IETF) is an open group working on  
maintaining and developing the Internet. IETF is open in the sense that anybody  
can join in principle.

JavaScript Object Notation (JSON) is a data format. In this format, data is written 
down using JavaScript notation. JSON is more succinct than other data formats  
such as XML.

k-fold cross-validation is a form of cross-validation involving k (a small integer 
number) random data partitions called folds. In k iterations, each fold is used once 
for validation and the rest of the data is used for training. The results of the iterations 
can be combined at the end.

Kruskal-Wallis one-way analysis of variance is a statistical method that analyzes 
sample variance without making assumptions about their distributions.

The lag plot is a scatter plot for a time series and the same time series lagged. A lag 
plot shows autocorrelation within time series data for a certain lag.

The learning curve is a way to visualize the behavior of a learning algorithm. It is a 
plot of training and test scores for a range of train data sizes.

Logarithmic plots (or log plots) are plots that use a logarithmic scale. This type of 
plots is useful when the data varies a lot because they display orders of magnitude.
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Logistic regression is a type of a classification algorithm. This algorithm can be 
used to predict probabilities associated with a class or an event occurring. Logistic 
regression is based on the logistic function, which has values in the range between 
zero and one, just like in probabilities. The logistic function can therefore be used to 
transform arbitrary values into probabilities.

MapReduce is a distributed algorithm used to process large datasets with a cluster 
of computers. The algorithm consists of Map and Reduce phases. During the Map 
phase, data is processed in parallel fashion. The data is split up in parts and on each 
part, filtering or other operations are performed. In the Reduce phase, the results 
from the Map phase are aggregated.

Moore's law is the observation that the number of transistors in a modern computer 
chip doubles every two years. This trend has continued since Moore's law formulation 
around 1970. There is also a second Moore's law, which is also known as Rock's 
law. This law states that the cost of R & D and manufacturing of integrated circuits 
increases exponentially.

Moving averages specify a window of previously seen data that is averaged each time 
the window slides forward by one period. The different types of moving average differ 
essentially in the weights used for averaging.

Naive Bayes classification is a probabilistic classification algorithm based on Bayes 
theorem from probability theory and statistics. It is called naive because of its strong 
independence assumptions.

Object-relational mapping (ORM) is a software architecture pattern for translation 
between database schemas and object-oriented programming languages.

Opinion mining or sentiment analysis is a research field with the goal of efficiently 
finding and evaluating opinions and sentiments in text.

Part of Speech (POS) tags are tags for each word in a sentence. These tags have a 
grammatical meaning such as a verb or noun.

REST (Representational State Transfer) is an architectural style for web services.

RSS (Really Simple Syndication) is a standard for the publication and retrieval of 
web feeds such as blogs.

The scatter plot is a two-dimensional plot showing the relationship between two 
variables in a Cartesian coordinate system. The values of one variable are represented 
on one axis and the values of the other variable are represented by the other axis.  
We can quickly visualize correlation this way.
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Signal processing is a field of engineering and applied mathematics that handles the 
analysis of analog and digital signals, corresponding to variables that vary with time.

SQL is a specialized language for relational database querying and manipulation. 
This includes creating tables, inserting rows in tables, and deleting tables.

Stopwords are common words with low-information value. Stopwords are usually 
removed before analyzing text. Although filtering stopwords is a common practice, 
there is no standard definition for stopwords.

Supervised learning is a type of machine learning that requires labeled training data.

Support vector machines (SVM) can be used for regression (SVR) and  
classification (SVC). SVM maps the data points to points in a multidimensional 
space. The mapping is performed by a so-called kernel function. The kernel  
function can be linear or nonlinear.

Term frequency-inverse document frequency (tf-idf) is a metric measuring the 
importance of a word in a corpus. It is composed of a term frequency number and 
an inverse document frequency number. The term frequency counts the number 
of times a word occurs in a document. The inverse document frequency counts the 
number of documents in which the word occurs and takes the inverse of the number.

A time series is an ordered list of data points starting with the oldest measurements 
first. Usually, each data point has a related timestamp.





Useful Functions
This appendix lists useful functions organized by packages for matplotlib, NumPy, 
pandas, scikit-learn, and SciPy.

matplotlib
The following are useful matplotlib functions:

• matplotlib.pyplot.axis(*v, **kwargs): This is the method to get or set 
axis properties. For example, axis('off') turns off the axis lines and labels.

• matplotlib.pyplot.figure(num=None, figsize=None, dpi=None, 
facecolor=None, edgecolor=None, frameon=True, FigureClass=<class 
'matplotlib.figure.Figure'>, **kwargs): This function creates a  
new figure.

• matplotlib.pyplot.grid(b=None, which='major', axis='both', 
**kwargs): This function turns the plot grids on or off.

• matplotlib.pyplot.hist(x, bins=10, range=None, normed=False, 
weights=None, cumulative=False, bottom=None, histtype='bar', 
align='mid', orientation='vertical', rwidth=None, log=False, 
color=None, label=None, stacked=False, hold=None, **kwargs): 
This function plots a histogram.

• matplotlib.pyplot.imshow(X, cmap=None, norm=None, aspect=None, 
interpolation=None, alpha=None, vmin=None, vmax=None, 
origin=None, extent=None, shape=None, filternorm=1, 
filterrad=4.0, imlim=None, resample=None, url=None, hold=None, 
**kwargs): This function displays an image for array-like data.

• matplotlib.pyplot.legend(*args, **kwargs): This function  
shows a legend at an optionally specified location (for instance,  
plt.legend(loc='best')).
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• matplotlib.pyplot.plot(*args, **kwargs): This function creates  
a two-dimensional plot with single or multiple (x, y) pairs and a 
corresponding optional format string.

• matplotlib.pyplot.scatter(x, y, s=20, c='b', marker='o', 
cmap=None, norm=None, vmin=None, vmax=None, alpha=None, 
linewidths=None, verts=None, hold=None, **kwargs): This function 
creates a scatter plot of two arrays.

• matplotlib.pyplot.show(*args, **kw): This function displays a plot.
• matplotlib.pyplot.subplot(*args, **kwargs): This function creates 

subplots if the row number, column number, and index number of the plot 
are given. All these numbers start from one. For instance, plt.subplot(221) 
creates the first subplot in a two-by-two grid.

• matplotlib.pyplot.title(s, *args, **kwargs): This function puts a 
title on the plot.

NumPy
The following are useful NumPy functions:

• numpy.arange([start,] stop[, step,], dtype=None): This function 
creates a NumPy array with evenly spaced values within a specified range.

• numpy.argsort(a, axis=-1, kind='quicksort', order=None):  
This function returns the indices that will sort the input array.

• numpy.array(object, dtype=None, copy=True, order=None, 
subok=False, ndmin=0): This function creates a NumPy array from an 
array-like sequence such as a Python list.

• numpy.dot(a, b, out=None):This function calculates the dot product of 
two arrays.

• numpy.eye(N, M=None, k=0, dtype=<type 'float'>): This function 
returns the identity matrix.

• numpy.load(file, mmap_mode=None): This function loads NumPy arrays 
or pickled objects from .npy, .npz, or pickles. A memory-mapped array 
is stored in the filesystem and doesn't have to be completely loaded in the 
memory. This is especially useful for large arrays.

• numpy.loadtxt(fname, dtype=<type 'float'>, comments='#', 
delimiter=None, converters=None, skiprows=0, usecols=None, 
unpack=False, ndmin=0): This function loads data from a text file into  
a NumPy array.
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• numpy.mean(a, axis=None, dtype=None, out=None, keepdims=False): 
This function calculates the arithmetic mean along the given axis.

• numpy.median(a, axis=None, out=None, overwrite_input=False): 
This function calculates the median along the given axis.

• numpy.ones(shape, dtype=None, order='C'): This function creates a 
NumPy array of a specified shape and data type, containing ones.

• numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, 
cov=False): This function performs a least squares polynomial fit.

• numpy.reshape(a, newshape, order='C'): This function changes the 
shape of a NumPy array.

• numpy.save(file, arr): This function saves a NumPy array to a file in  
the NumPy .npy format.

• numpy.savetxt(fname, X, fmt='%.18e', delimiter=' ', 
newline='\n', header='', footer='', comments='# '): This function 
saves a NumPy array to a text file.

• numpy.std(a, axis=None, dtype=None, out=None, ddof=0, 
keepdims=False): This function returns the standard deviation along  
the given axis.

• numpy.where(condition, [x, y]): This function selects array elements 
from input arrays based on a Boolean condition.

• numpy.zeros(shape, dtype=float, order='C'): This function creates a 
NumPy array of a specified shape and data type, containing zeros.

pandas
The following are useful pandas functions:

• pandas.date_range(start=None, end=None, periods=None, freq='D', 
tz=None, normalize=False, name=None, closed=None): This function 
creates a fixed frequency date-time index

• pandas.isnull(obj): This function finds NaN and None values
• pandas.merge(left, right, how='inner', on=None, left_on=None, 

right_on=None, left_index=False, right_index=False, sort=False, 
suffixes=('_x', '_y'), copy=True): This function merges the DataFrame 
objects with a database-like join on columns or indices

• pandas.pivot_table(data, values=None, rows=None, cols=None, 
aggfunc='mean', fill_value=None, margins=False, dropna=True): 
This function creates a spreadsheet-like pivot table as a pandas DataFrame
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• pandas.read_csv(filepath_or_buffer, sep=',', dialect=None, 
compression=None, doublequote=True, escapechar=None, 
quotechar='"', quoting=0, skipinitialspace=False, 
lineterminator=None, header='infer', index_col=None, 
names=None, prefix=None, skiprows=None, skipfooter=None, skip_
footer=0, na_values=None, na_fvalues=None, true_values=None, 
false_values=None, delimiter=None, converters=None, 
dtype=None, usecols=None, engine='c', delim_whitespace=False, 
as_recarray=False, na_filter=True, compact_ints=False, use_
unsigned=False, low_memory=True, buffer_lines=None, warn_
bad_lines=True, error_bad_lines=True, keep_default_na=True, 
thousands=Nment=None, decimal='.', parse_dates=False, keep_
date_col=False, dayfirst=False, date_parser=None, memory_
map=False, nrows=None, iterator=False, chunksize=None, 
verbose=False, encoding=None, squeeze=False, mangle_dupe_
cols=True, tupleize_cols=False, infer_datetime_format=False): 
This function creates a DataFrame from a CSV file

• pandas.read_excel(io, sheetname, **kwds): This function reads an 
Excel worksheet into a DataFrame

• pandas.read_hdf(path_or_buf, key, **kwargs): This function returns  
a pandas object from an HDF store

• pandas.read_json(path_or_buf=None, orient=None, typ='frame', 
dtype=True, convert_axes=True, convert_dates=True, keep_
default_dates=True, numpy=False, precise_float=False, date_
unit=None): This function creates a pandas object from a JSON string

• pandas.to_datetime(arg, errors='ignore', dayfirst=False, 
utc=None, box=True, format=None, coerce=False, unit='ns', 
infer_datetime_format=False): This function converts a string or  
list of strings to datetime

Scikit-learn
The following are useful scikit-learn functions:

• sklearn.cross_validation.train_test_split(*arrays, **options): 
This function splits arrays into random train and test sets

• sklearn.metrics.accuracy_score(y_true, y_pred, normalize=True, 
sample_weight=None): This function returns the accuracy classification score

• sklearn.metrics.euclidean_distances (X, Y=None, Y_norm_
squared=None, squared=False): This function computes the distance 
matrix for the input data
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SciPy
This section shows useful SciPy functions:

scipy.fftpack
• fftshift(x, axes=None): This function shifts the zero-frequency component 

to the center of the spectrum
• rfft(x, n=None, axis=-1, overwrite_x=0): This function performs a 

discrete Fourier transform of an array containing real values

scipy.signal
• detrend(data, axis=-1, type='linear', bp=0): This function removes 

the linear trend or a constant from the data
• medfilt(volume, kernel_size=None): This function applies a median 

filter on an array
• wiener(im, mysize=None, noise=None): This function applies a Wiener 

filter on an array

scipy.stats
• anderson(x, dist='norm'): This function performs the Anderson-Darling 

test for data coming from a specified distribution
• kruskal(*args): This function performs the Kruskal-Wallis H test for data
• normaltest(a, axis=0): This function tests whether data complies to the  

normal distribution
• scoreatpercentile(a, per, limit=(), interpolation_

method='fraction'): This function computes the score at a specified 
percentile of the input array

• shapiro(x, a=None, reta=False): This function applies the Shapiro-Wilk 
test for normality





Online Resources
The following is a list of links to documentation, forums, articles,  
and other information:

• The Apache Cassandra database: http://cassandra.apache.org
• Beautiful Soup: http://www.crummy.com/software/BeautifulSoup
• The HDF Group website: http://www.hdfgroup.org
• A gallery of interesting IPython notebooks: https://github.com/ipython/

ipython/wiki/A-gallery-of-interesting-IPython-Notebooks

• The Graphviz open source graph visualization software:  
http://graphviz.org/

• The IPython website: http://ipython.org/
• matplotlib (a Python plotting library): http://matplotlib.org/
• MongoDB (an open source document database): http://www.mongodb.org
• The mpi4py docs: http://mpi4py.scipy.org/docs/usrman/index.html
• NLTK (Natural Language Toolkit): http://www.nltk.org/
• NumPy and SciPy Documentation: http://docs.scipy.org/doc/
• NumPy and SciPy Mailing Lists: http://www.scipy.org/Mailing_Lists
• Open MPI (a high performance message passing library):  

http://www.open-mpi.org

• Packt Publishing help and support: http://www.packtpub.com/support
• The pandas home page: http://pandas.pydata.org
• Python performance tips:  

https://wiki.python.org/moin/PythonSpeed/PerformanceTips

http://cassandra.apache.org
http://www.crummy.com/software/BeautifulSoup
http://www.hdfgroup.org
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
http://graphviz.org/
http://ipython.org/
http://matplotlib.org/
http://www.mongodb.org
http://mpi4py.scipy.org/docs/usrman/index.html
http://www.nltk.org/
http://docs.scipy.org/doc/
http://www.scipy.org/Mailing_Lists
http://www.open-mpi.org
http://www.packtpub.com/support
http://pandas.pydata.org
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
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• Redis (an open source, key-value store): http://redis.io/
• Scikit-learn (machine learning with Python):  

http://scikit-learn.org/stable/

• Scikit-learn performance tips:  
http://scikit-learn.org/stable/developers/performance.html

• SciPy performance tips: http://wiki.scipy.org/PerformanceTips
• SQLAlchemy (the Python SQL toolkit and Object Relational Mapper): 

http://www.sqlalchemy.org

• The Toolz utility functions documentation:  
http://toolz.readthedocs.org/en/latest/

http://redis.io/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/developers/performance.html
http://wiki.scipy.org/PerformanceTips
http://www.sqlalchemy.org
http://toolz.readthedocs.org/en/latest/
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G
generations  252
Genetic algorithms

about  307
overview  252-255
URL  252

genetic operators
about  253
crossover  253
evaluate  254
mate  254
mutate  254
mutation  253
select  254

Gentoo
NumPy, installing on  12



[ 322 ]

GET method  131
gfortran compiler

about  274
download link  274

Global Interpreter Lock (GIL)  290
Google App Engine (GAE)

download link  275
setting up  275, 276
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HDF Group
URL  317

Hierarchical Data Format. See  HDF
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scipy.stats.kruskal() function  266
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SciPy Superpack

URL  13
score() method  239
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about  85, 90
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session, IPython shell
saving  20
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about  196
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about  240, 309
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about  269
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