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CHAPTER 1

Introduction

Finding Signals in the Noise
Popular data science publications tend to creep me out. I’ll read case
studies where I’m led by deduction from the data collected to a very
cool insight. Each step is fully justified, the interpretation is clear—
and yet the whole thing feels weird. My problem with these stories is
that everything you need to know is known, or at least present in
some form. The challenge is finding the analytical approach that will
get you safely to a prediction. This works when all transactions hap‐
pen digitally, like ecommerce, or when the world is simple enough
to fully quantify, like some sports. But the world I know is a lot dif‐
ferent. In my world, I spend a lot of time dealing with real people
and the problems they are trying to solve. Missing information is
common. The things I really want to know are outside my observa‐
ble universe and, many times, the best I can hope for are weak sig‐
nals.

CSC (Computer Sciences Corporation) is a global IT leader and
every day we’re faced with the challenge of using IT to solve our cus‐
tomer’s business problems. I’m asked questions like: what are our
client’s biggest problems, what solutions should we build, and what
skills do we need? These questions are complicated and messy, but
often there are answers. Getting to answers requires a strategy and,
so far, I’ve done quite well with basic, simple heuristics. It’s natural
to think that complex environments require complex strategies, but
often they don’t. Simple heuristics tend to be most resilient when
trying to generate plausible scenarios about something as uncertain
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as the real world. And simple scales. As the volume and variety of
data increases, the number of possible correlations grows a lot faster
than the number of meaningful or useful ones. As data gets bigger,
noise grows faster than signal (Figure 1-1).

Figure 1-1. As data gets bigger, noise grows faster than signal

Finding signals buried in the noise is tough, and not every data sci‐
ence technique is useful for finding the types of insights I need to
discover.  But there is a subset of practices that I’ve found fantasti‐
cally useful. I call them “data science that works.” It’s the set of data
science practices that I’ve found to be consistently useful in extract‐
ing simple heuristics for making good decisions in a messy and
complicated world. Getting to a data science that works is a difficult
process of trial and error.

But essentially it comes down to two factors:

• First, it’s important to value the right set of data science skills.
• Second, it’s critical to find practical methods of induction where

I can infer general principles from observations and then reason
about the credibility of those principles.

Data Science that Works
The common ask from a data scientist is the combination of subject
matter expertise, mathematics, and computer science. However I’ve
found that the skill set that tends to be most effective in practice are
agile experimentation, hypothesis testing, and professional data sci‐
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ence programming. This more pragmatic view of data science skills
shifts the focus from searching for a unicorn to relying on real flesh-
and-blood humans. After you have data science skills that work,
what remains to consistently finding actionable insights is a practi‐
cal method of induction.

Induction is the go-to method of reasoning when you don’t have all
the information. It takes you from observations to hypotheses to the
credibility of each hypothesis. You start with a question and collect
data you think can give answers. Take a guess at a hypothesis and
use it to build a model that explains the data. Evaluate the credibility
of the hypothesis based on how well the model explains the data
observed so far. Ultimately the goal is to arrive at insights we can
rely on to make high-quality decisions in the real world. The biggest
challenge in judging a hypothesis is figuring out what available evi‐
dence is useful for the task. In practice, finding useful evidence and
interpreting its significance is the key skill of the practicing data sci‐
entist—even more so than mastering the details of a machine learn‐
ing algorithm.

The goal of this book is to communicate what I’ve learned, so far,
about data science that works:

1. Start with a question.
2. Guess at a pattern.
3. Gather observations and use them to generate a hypothesis.
4. Use real-world evidence to judge the hypothesis.
5. Collaborate early and often with customers and subject matter

experts along the way.

At any point in time, a hypothesis and our confidence in it is simply
the best that we can know so far. Real-world data science results are
abstractions—simple heuristic representations of the reality they
come from. Going pro in data science is a matter of making a small
upgrade to basic human judgment and common sense. This book is
built from the kinds of thinking we’ve always relied on to make
smart decisions in a complicated world.
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CHAPTER 2

How to Get a Competitive
Advantage Using Data Science

The Standard Story Line for Getting Value
from Data Science
Data science already plays a significant role in specialized areas.
Being able to predict machine failure is a big deal in transportation
and manufacturing. Predicting user engagement is huge in advertis‐
ing. And properly classifying potential voters can mean the differ‐
ence between winning and losing an election.

But the thing that excites me most is the promise that, in general,
data science can give a competitive advantage to almost any business
that is able to secure the right data and the right talent. I believe that
data science can live up to this promise, but only if we can fix some
common misconceptions about its value.

For instance, here’s the standard story line when it comes to data sci‐
ence: data-driven companies outperform their peers—just look at
Google, Netflix, and Amazon. You need high-quality data with the
right velocity, variety, and volume, the story goes, as well as skilled
data scientists who can find hidden patterns and tell compelling sto‐
ries about what those patterns really mean. The resulting insights
will drive businesses to optimal performance and greater competi‐
tive advantage. Right?

Well…not quite.
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The standard story line sounds really good. But a few problems
occur when you try to put it into practice.

The first problem, I think, is that the story makes the wrong
assumption about what to look for in a data scientist. If you do a
web search on the skills required to be a data scientist (seriously, try
it), you’ll find a heavy focus on algorithms. It seems that we tend to
assume that data science is mostly about creating and running
advanced analytics algorithms.

I think the second problem is that the story ignores the subtle, yet
very persistent tendency of human beings to reject things we don’t
like. Often we assume that getting someone to accept an insight
from a pattern found in the data is a matter of telling a good story.
It’s the “last mile” assumption. Many times what happens instead is
that the requester questions the assumptions, the data, the methods,
or the interpretation. You end up chasing follow-up research tasks
until you either tell your requesters what they already believed or
just give up and find a new project.

An Alternative Story Line for Getting Value
from Data Science
The first step in building a competitive advantage through data sci‐
ence is having a good definition of what a data scientist really is. I
believe that data scientists are, foremost, scientists. They use the sci‐
entific method. They guess at hypotheses. They gather evidence.
They draw conclusions. Like all other scientists, their job is to create
and test hypotheses. Instead of specializing in a particular domain of
the world, such as living organisms or volcanoes, data scientists spe‐
cialize in the study of data. This means that, ultimately, data scien‐
tists must have a falsifiable hypothesis to do their job. Which puts
them on a much different trajectory than what is described in the
standard story line.

If you want to build a competitive advantage through data science,
you need a falsifiable hypothesis about what will create that advan‐
tage. Guess at the hypothesis, then turn the data scientist loose on
trying to confirm or refute it. There are countless specific hypothe‐
ses you can explore, but they will all have the same general form:

It’s more effective to do X than to do Y

For example:
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• Our company will sell more widgets if we increase delivery
capabilities in Asia Pacific.

• The sales force will increase their overall sales if we introduce
mandatory training.

• We will increase customer satisfaction if we hire more user-
experience designers.

You have to describe what you mean by effective. That is, you need
some kind of key performance indicator, like sales or customer satis‐
faction, that defines your desired outcome. You have to specify some
action that you believe connects to the outcome you care about. You
need a potential leading indicator that you’ve tracked over time.
Assembling this data is a very difficult step, and one of the main rea‐
sons you hire a data scientist. The specifics will vary, but the data
you need will have the same general form shown in Figure 2-1.

Figure 2-1. The data you need to build a competitive advantage using
data science

Let’s take, for example, our hypothesis that hiring more user-
experience designers will increase customer satisfaction. We already
control whom we hire. We want greater control over customer satis‐
faction—the key performance indicator. We assume that the number
of user experience designers is a leading indicator of customer satis‐
faction. User experience design is a skill of our employees, employ‐
ees work on client projects, and their performance influences
customer satisfaction.

Once you’ve assembled the data you need (Figure 2-2), let your data
scientists go nuts. Run algorithms, collect evidence, and decide on
the credibility of the hypothesis. The end result will be something
along the lines of “yes, hiring more user experience designers should
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increase customer satisfaction by 10% on average” or “the number of
user experience designers has no detectable influence on customer
satisfaction.”

Figure 2-2. An example of the data you need to explore the hypothesis
that hiring more user experience designers will improve customer sat‐
isfaction

The Importance of the Scientific Method
Notice, now, that we’ve pushed well past the “last mile.” At this point,
progress is not a matter of telling a compelling story and convincing
someone of a particular worldview. Progress is a matter of choosing
whether or not the evidence is strong enough to justify taking
action. The whole process is simply a business adaptation of the sci‐
entific method (Figure 2-3).

This brand of data science may not be as exciting as the idea of tak‐
ing unexplored data and discovering unexpected connections that
change everything. But it works. The progress you make is steady
and depends entirely on the hypotheses you choose to investigate.
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Figure 2-3. The process of accumulating competitive advantages using
data science; it’s a simple adaptation of the scientific method

Which brings us to the main point: there are many factors that con‐
tribute to the success of a data science team. But achieving a com‐
petitive advantage from the work of your data scientists depends on
the quality and format of the questions you ask.

How to Partner with the C-Suite
If you are an executive, people are constantly trying to impress you.
No one wants to be the tattletale with lots of problems, they want to
be the hero with lots of solutions. For us mere mortals, finding peo‐
ple who will list the ways we’re screwing up is no problem. For an
executive, that source of information is a rare and valuable thing.

Most executives follow a straightforward process for making deci‐
sions: define success, gather options, make a call. For most, spend‐
ing a few hours on the Web researching options or meeting with
subject-matter experts is no problem. But for an executive, spend‐
ing that kind of time is an extravagance they can’t afford.

All of this is good news for the data scientist. It means that the bar
for being valuable to the C-Suite isn’t as high as you might think.
Groundbreaking discoveries are great, but being a credible source
of looming problems and viable solutions is probably enough to
reserve you a seat at the table.

The Importance of the Scientific Method | 9





CHAPTER 3

What to Look for in a
Data Scientist

A Realistic Skill Set
What’s commonly expected from a data scientist is a combination of
subject matter expertise, mathematics, and computer science. This is
a tall order and it makes sense that there would be a shortage of peo‐
ple who fit the description. The more knowledge you have, the bet‐
ter. However, I’ve found that the skill set you need to be effective, in
practice, tends to be more specific and much more attainable
(Figure 3-1). This approach changes both what you look
for from data science and what you look for in a data scientist.

A background in computer science helps with understanding soft‐
ware engineering, but writing working data products requires spe‐
cific techniques for writing solid data science code. Subject matter
expertise is needed to pose interesting questions and interpret
results, but this is often done in collaboration between the data sci‐
entist and subject matter experts (SMEs). In practice, it is much
more important for data scientists to be skilled at engaging SMEs in
agile experimentation. A background in mathematics and statistics
is necessary to understand the details of most machine learning
algorithms, but to be effective at applying those algorithms requires
a more specific understanding of how to evaluate hypotheses.
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Figure 3-1. A more pragmatic view of the required data science skills

Realistic Expectations
In practice, data scientists usually start with a question, and then
collect data they think could provide insight. A data scientist has to
be able to take a guess at a hypothesis and use it to explain the data.
For example, I collaborated with HR in an effort to find the factors
that contributed best to employee satisfaction at our company (I
describe this in more detail in Chapter 4). After a few short sessions
with the SMEs, it was clear that you could probably spot an unhappy
employee with just a handful of simple warning signs—which made
decision trees (or association rules) a natural choice. We selected a
decision-tree algorithm and used it to produce a tree and error esti‐
mates based on employee survey responses.

Once we have a hypothesis, we need to figure out if it’s something
we can trust. The challenge in judging a hypothesis is figuring out
what available evidence would be useful for that task.

12 | Chapter 3: What to Look for in a Data Scientist



The Most Important Quality of a Data Scientist

I believe that the most important quality to look
for in a data scientist is the ability to find useful
evidence and interpret its significance.

In data science today, we spend way too much time celebrating the
details of machine learning algorithms. A machine learning algo‐
rithm is to a data scientist what a compound microscope is to a biol‐
ogist. The microscope is a source of evidence. The biologist should
understand that evidence and how it was produced, but we should
expect our biologists to make contributions well beyond custom
grinding lenses or calculating refraction indices.

A data scientist needs to be able to understand an algorithm. But
confusion about what that means causes would-be great data scien‐
tists to shy away from the field, and practicing data scientists to
focus on the wrong thing. Interestingly, in this matter we can bor‐
row a lesson from the Turing Test. The Turing Test gives us a way to
recognize when a machine is intelligent—talk to the machine. If you
can’t tell if it’s a machine or a person, then the machine is intelligent.
We can do the same thing in data science. If you can converse intel‐
ligently about the results of an algorithm, then you probably under‐
stand it. In general, here’s what it looks like:

Q: Why are the results of the algorithm X and not Y?

A: The algorithm operates on principle A. Because the circumstan‐
ces are B, the algorithm produces X. We would have to change
things to C to get result Y.

Here’s a more specific example:

Q: Why does your adjacency matrix show a relationship of 1
(instead of 3) between the term “cat” and the term “hat”?

A: The algorithm defines distance as the number of characters
needed to turn one term into another. Since the only difference
between “cat” and “hat” is the first letter, the distance between them
is 1. If we changed “cat” to, say, “dog”, we would get a distance of 3.

The point is to focus on engaging a machine learning algorithm as a
scientific apparatus. Get familiar with its interface and its output.
Form mental models that will allow you to anticipate the relation‐
ship between the two. Thoroughly test that mental model. If you can
understand the algorithm, you can understand the hypotheses it
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produces and you can begin the search for evidence that will con‐
firm or refute the hypothesis.

We tend to judge data scientists by how much they’ve stored in their
heads. We look for detailed knowledge of machine learning algo‐
rithms, a history of experiences in a particular domain, and an all-
around understanding of computers. I believe it’s better, however, to
judge the skill of a data scientist based on their track record of shep‐
herding ideas through funnels of evidence and arriving at insights
that are useful in the real world.
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CHAPTER 4

How to Think Like a Data Scientist

Practical Induction
Data science is about finding signals buried in the noise. It’s tough to
do, but there is a certain way of thinking about it that I’ve found use‐
ful. Essentially, it comes down to finding practical methods of
induction, where I can infer general principles from observations,
and then reason about the credibility of those principles.

Induction is the go-to method of reasoning when you don’t have all
of the information. It takes you from observations to hypotheses to
the credibility of each hypothesis. In practice, you start with a
hypothesis and collect data you think can give you answers. Then,
you generate a model and use it to explain the data. Next, you evalu‐
ate the credibility of the model based on how well it explains the
data observed so far. This method works ridiculously well.

To illustrate this concept with an example, let’s consider a recent
project, wherein I worked to uncover factors that contribute most to
employee satisfaction at our company. Our team guessed that pat‐
terns of employee satisfaction could be expressed as a decision tree.
We selected a decision-tree algorithm and used it to produce a
model (an actual tree), and error estimates based on observations of
employee survey responses (Figure 4-1). 
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Figure 4-1. A decision-tree model that predicts employee happiness

Each employee responded to questions on a scale from 0 to 5, with 0
being negative and 5 being positive. The leaf nodes of the tree pro‐
vide a prediction of how many employees were likely to be happy
under different circumstances. We arrived at a model that predicted
—as long as employees felt they were paid even moderately well, had
management that cared, and options to advance—they were very
likely to be happy.

The Logic of Data Science
The logic that takes us from employee responses to a conclusion we
can trust involves a combination of observation, model, error and
significance. These concepts are often presented in isolation—how‐
ever, we can illustrate them as a single, coherent framework using
concepts borrowed from David J. Saville and Graham R. Wood’s
statistical triangle. Figure 4-2 shows the observation space: a sche‐
matic representation that makes it easier to see how the logic of data
science works.
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Figure 4-2. The observation space: using the statistical triangle to illus‐
trate the logic of data science

Each axis represents a set of observations. For example a set of
employee satisfaction responses. In a two-dimensional space, a point
in the space represents a collection of two independent sets of obser‐
vations. We call the vector from the origin to a point, an observation
vector (the blue arrow). In the case of our employee surveys, an
observation vector represents two independent sets of employee sat‐
isfaction responses, perhaps taken at different times. We can gener‐
alize to an arbitrary number of independent observations, but we’ll
stick with two because a two-dimensional space is easier to draw.

The dotted line shows the places in the space where the independent
observations are consistent—we observe the same patterns in both
sets of observations. For example, observation vectors near the dot‐
ted line is where we find that two independent sets of employees
answered satisfaction questions in similar ways. The dotted line rep‐
resents the assumption that our observations are ruled by some
underlying principle.
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The decision tree of employee happiness is an example of a model.
The model summarizes observations made of individual employee
survey responses. When you think like a data scientist, you want a
model that you can apply consistently across all observations (ones
that lie along the dotted line in observation space). In the employee
satisfaction analysis, the decision-tree model can accurately classify
a great majority of the employee responses we observed.

The green line is the model that fits the criteria of Ockham’s Razor
(Figure 4-3): among the models that fit the observations, it has the
smallest error and, therefore, is most likely to accurately predict
future observations. If the model were any more or less complicated,
it would increase error and decrease in predictive power.

Figure 4-3. The thinking behind finding the best model

Ultimately, the goal is to arrive at insights we can rely on to make
high-quality decisions in the real world. We can tell if we have a
model we can trust by following a simple rule of Bayesian reasoning:
look for a level of fit between model and observation that is unlikely
to occur just by chance. For example, the low P values for our
employee satisfaction model tells us that the patterns in the decision
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tree are unlikely to occur by chance and, therefore, are significant.
In observation space, this corresponds to small angles (which are
less likely than larger ones) between the observation vector and the
model. See Figure 4-4.

Figure 4-4. A small angle indicates a significant model because it’s
unlikely to happen by chance

When you think like a data scientist, you start by collecting observa‐
tions. You assume that there is some kind of underlying order to
what you are observing and you search for a model that can repre‐
sent that order.  Errors are the differences between the model you
build and the actual observations. The best models are the ones that
describe the observations with a minimum of error. It’s unlikely that
random observations will have a model that fits with a relatively
small error. Models like these are significant to someone who thinks
like a data scientist. It means that we’ve likely found the underlying
order we were looking for. We’ve found the signal buried in the
noise.
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Treating Data as Evidence
The logic of data science tells us what it means to treat data as evi‐
dence. But following the evidence does not necessarily lead to a
smooth increase or decrease in confidence in a model. Models in
real-world data science change, and sometimes these changes can be
dramatic. New observations can change the models you should con‐
sider. New evidence can change confidence in a model. As we collec‐
ted new employee satisfaction responses, factors like specific job
titles became less important, while factors like advancement oppor‐
tunities became crucial. We stuck with the methods described in this
chapter, and as we collected more observations, our models became
more stable and more reliable.

I believe that data science is the best technology we have for discov‐
ering business insights. At its best, data science is a competition of
hypotheses about how a business really works. The logic of data sci‐
ence are the rules of the contest. For the practicing data scientist,
simple rules like Ockham’s Razor and Bayesian reasoning are all you
need to make high-quality, real-world decisions.
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CHAPTER 5

How to Write Code

My experience of being a data scientist is not at all like what I’ve
read in books and blogs. I’ve read about data scientists working for
digital superstar companies. They sound like heroes writing auto‐
mated (near-sentient) algorithms constantly churning out insights.
I’ve read about MacGyver-like data scientist hackers who save the
day by cobbling together data products from whatever raw material
they have around.

The data products my team creates are not important enough to jus‐
tify huge enterprise-wide infrastructures. It’s just not worth it to
invest in hyperefficient automation and production control. On the
other hand, our data products influence important decisions in the
enterprise, and it’s important that our efforts scale. We can’t afford to
do things manually all the time, and we need efficient ways of shar‐
ing results with tens of thousands of people.

There are a lot of us out there—the “regular” data scientists. We’re
more organized than hackers, but have no need for a superhero-
style data science lair. A group of us met and held a speed ideation
event, where we brainstormed on the best practices we need to write
solid code. This chapter is a summary of the conversation and an
attempt to collect our knowledge, distill it, and present it in one
place.
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The Professional Data Science Programmer
Data scientists need software engineering skills—just not all the
skills a professional software engineer needs. I call data scientists
with essential data product engineering skills “professional” data sci‐
ence programmers. Professionalism isn’t a possession like a certifi‐
cation or hours of experience; I’m talking about professionalism as
an approach. The professional data science programmer is self-
correcting in their creation of data products. They have general
strategies for recognizing where their work sucks and correcting the
problem.

The professional data science programmer has to turn a hypothesis
into software capable of testing that hypothesis. Data science pro‐
gramming is unique in software engineering because of the types of
problems data scientists tackle. The big challenge is that the nature
of data science is experimental. The challenges are often difficult,
and the data is messy. For many of these problems, there is no
known solution strategy, the path toward a solution is not known
ahead of time, and possible solutions are best explored in small
steps. In what follows, I describe general strategies for a disciplined,
productive trial-and-error process: breaking problems into small
steps, trying solutions, and making corrections along the way.

Think Like a Pro
To be a professional data science programmer, you have to know
more than how the systems are structured. You have to know how to
design a solution, you have to be able to recognize when you have a
solution, and you have to be able to recognize when you don’t fully
understand your solution. That last point is essential to being self-
correcting. When you recognize the conceptual gaps in your
approach, you can fill them in yourself. To design a data science sol‐
ution in a way that you can be self-correcting, I’ve found it useful to
follow the basic process of look, see, imagine, and show.

Step 1: Look
Start by scanning the environment. Do background research
and become aware of all the pieces that might be related to the
problem you are trying to solve. Look at your problem in as
much breadth as you can. Get visibility into as much of your sit‐
uation as you can and collect disparate pieces of information.
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1 I describe the blackboard pattern in more detail in the next section.
2 https://twitter.com/acroll

Step 2: See
Take the disparate pieces you discovered and chunk them into
abstractions that correspond to elements of the blackboard pat‐
tern.1 At this stage, you are casting elements of the problem into
meaningful, technical concepts. Seeing the problem is a critical
step for laying the groundwork for creating a viable design.

Step 3: Imagine
Given the technical concepts you see, imagine some implemen‐
tation that moves you from the present to your target state. If
you can’t imagine an implementation, then you probably missed
something when you looked at the problem.

Step 4: Show
Explain your solution first to yourself, then to a peer, then to
your boss, and finally to a target user. Each of these explanations
need only be just formal enough to get your point across: a
water-cooler conversation, an email, a 15-minute walk‐
through. This is the most important regular practice in becoming
a self-correcting professional data science programmer. If there
are any holes in your approach, they’ll most likely come to light
when you try to explain it. Take the time to fill in the gaps and
make sure you can properly explain the problem and its solu‐
tion.

Design Like a Pro
The activities of creating and releasing a data product are varied and
complex, but, typically, what you do will fall somewhere in what
Alistair Croll2 describes as the big-data supply chain (Figure 5-1).
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Figure 5-1. The big data supply chain

Because data products execute according to a paradigm (real time,
batch mode, or some hybrid of the two), you will likely find yourself
participating in a combination of data supply chain activity and a
data-product paradigm: ingesting and cleaning batch-updated data,
building an algorithm to analyze real-time data, sharing the results
of a batch process, etc. Fortunately, the blackboard architectural pat‐
tern (Figure 5-2) gives us a basic blueprint for good software engi‐
neering in any of these scenarios.

Figure 5-2. The blackboard pattern

The blackboard pattern tells us to solve problems by dividing the
overall task of finding a solution into a set of smaller, self-con‐
tained subtasks. Each subtask transforms your hypothesis into one
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that’s easier to solve or a hypothesis whose solution is already
known. Each task gradually improves the solution and leads, hope‐
fully, to a viable resolution.

Data science is awash in tools, each with its own unique virtues.
Productivity is a big deal, and I like letting my team choose whatever
tools they are most familiar with. Using the blackboard pattern
makes it okay to build data products from a collection of different
technologies. Cooperation between algorithms happens through a
shared repository. Each algorithm can access data, process it as
input, and deliver the results back to the repository for some other
algorithm to use as input.

Last, the algorithms are all coordinated using a single control com‐
ponent that represents the heuristic used to solve the problem
(Figure 5-3). The control is the implementation of the strategy
you’ve chosen to solve the problem. This is the highest level of
abstraction and understanding of the problem, and it’s implemented
by a technology that can interface with and determine the order of
all the other algorithms. The control can be something automated
like a cron job or a script. Or it can be manual, like a person that
executes the different steps in the proper order. But overall, it’s the
total strategy for solving the problem. It’s the one place you can go
to see the solution to the problem from start to finish.

Figure 5-3. The component parts of the blackboard pattern

This basic approach has proven useful in constructing software sys‐
tems that have to solve uncertain, hypothetical problems using
incomplete data. The best part is that it lets us make progress with
an uncertain problem using certain, deterministic pieces. Unfortu‐
nately, there is no guarantee that your efforts will actually solve the
problem. It’s better to know sooner rather than later if you are going
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3 A stub is a piece of code that serves as a simulation for some piece of programming
functionality. A stub is a simple, temporary substitute for yet-to-be-developed code.

down a path that won’t work. You do this using the order in which
you implement the system.

Build Like a Pro
You don’t have to build the elements of a data product in a set order
(i.e., build the repository first, then the algorithms, then the control‐
ler; see Figure 5-4). The professional approach is to build in the
order of highest technical risk. Start with the riskiest element first,
and go from there. An element can be technically risky for a lot of
reasons. The riskiest part may be the one that has the highest work‐
load or the part you understand the least.

Figure 5-4. Implementing the pieces of the blackboard pattern

You can build out components in any order by focusing on a single
element and stubbing3 out the rest. If you decide, for example, to
start by building an algorithm, dummy up the input data and define
a temporary spot to write the algorithm’s output.

Then, implement a data product in the order of technical risk: riski‐
est elements first. Focus on a particular element, stub out the rest,
and replace the stubs later. In Chapter 4, I described an analysis we
performed on employee satisfaction data. After we had a model that
told us which factors influenced happiness, we wanted to do further
analysis to find out why those factors were important. The plan was
to take employees that the model identified as happy, and build a
topic model from their unstructured text comments.
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I was certain that I could write the algorithm needed to produce the
topic model. I was somewhat confident that I could access the data,
but I wasn’t sure at all how to coordinate all the pieces so that they
fit into a coherent analysis. I decided to start by writing the control.
I wrote the following R code, then ran it to make sure that it exe‐
cuted as expected:

#Read in the employee ratings
ratings <- read.csv(file = "dummy_company_reviews.csv")

#This function takes raw employee ratings, processes them, 
#builds a topic model then displays the topics
topic_model <- function(ratings){
  topic_model_stub <- c("topic1","topic2","topic3")
}

#Perform a topic analysis on the reviewers with factors that 
#match happy employees. The resulting topics will give us more
#information about why the employees are happy
ratings.happy <- subset(ratings,
                        Compensation.Benefits > 2 & 
                          Management > 3 & 
                          Job.Security.Advancement > 2 & 
                          Helpful.Yes > 0
                        )
ratings.happy.desc <- ratings.happy[,"Review.Description.Trans
lated"]
topic_model(ratings.happy.desc)

Notice that I wrote the code to perform the high-level steps of the
analysis, but I stubbed out the functionality for providing data and
doing the topic modeling. For the data, I just wrote a dummy file
with text I made up. For the topic model algorithm, I wrote just
enough code to produce an output that could be used by the control
logic. After I was confident that I understood how the individual
pieces fit, and that I had control logic that worked, I started working
on gathering real input data. I wrote the comments of happy
employees to a file, then read that data in for analysis. After updat‐
ing the control with the following code, I ran the entire script to
make sure that things were still executing as expected:

#Read in the employee ratings
ratings <- read.csv(file = "rn_indeed_com
pany_reviews_06_14_2015.csv")

After I had control logic that I trusted and live data, I was in a posi‐
tion to write the actual topic modeling algorithm. I replaced the
body of the topic model function with real code that acted on the
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live data. I ran the entire script again and checked to make sure
everything was still working:

topic_model <- function(ratings){
  #write the body of code needed to perform an 
  #actual topic model analysis
}

The key is to build and run in small pieces: write algorithms in small
steps that you understand, build the repository one data source at a
time, and build your control one algorithm execution step at a time.
The goal is to have a working data product at all times—it just won’t
be fully functioning until the end.

Learn Like a Pro
Every pro needs quality tools. There are a lot of choices available. I
wanted this section to be a list of those tools, but the state of the art
changes so quickly that the list would be out of date pretty soon after
it reached the readers. What’s more useful than a list of tools are
techniques for learning new tools  rapidly and putting them to pro‐
ductive use.

The way that new data science tools are usually presented, you have
to master a lot of theoretical background before you can apply the
tool to anything meaningful. I’m what Jeanette M. Wing calls a com‐
putational thinker. I think in terms of simple discrete transactions
and I understand things by running them and watching what they
do. For me, the thought of sitting through lectures, doing home‐
work, reading technical specifications is just...uuuugghhh!

Here’s an alternative way of learning new tools:

1. Find a problem (small, but meaningful).
2. Choose a tool.
3. Get the tool to produce an output—any output.
4. Tinker with Step 3 until you’ve addressed Step 1.

For example, before analyzing the employee satisfaction data, I
didn’t know how to perform a topic model analysis. I read enough
about topic modeling to understand its purpose and to guess that it
was a good match for my problem. I chose an R library and got sam‐
ple code to run. Piece-by-piece, I changed parts of the sample code
to fit my employee satisfaction analysis. Each time I made a change,
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4 In Chapter 3, I describe a technique for recognizing whether or not you understand an
algorithm.

I tested the results and learned along the way. When I was done, I
did a review4 to make sure that I understood the algorithm.

Learning this way requires some sacrifice. You have to be a pragma‐
tist—willing to focus on what’s needed to solve a particular problem.
The way I learned about topic modeling made me proficient at a
particular application, but (I imagine) that there are all kinds nuan‐
ces I skipped over. I’ve found the problem-solving approach to
learning new tools is a very reliable way to learn the most important
features very quickly. Nor has such a focused approach hurt my
understanding of the general principles involved.
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CHAPTER 6

How to Be Agile

I lead a research team of data scientists responsible for discovering
insights that lead to market and competitive intelligence for our
company. We are a busy group. We get questions from all different
areas of the company and it’s important to be agile.

The nature of data science is experimental. You don’t know the
answer to the question asked of you—or even if an answer exists.
You don’t know how long it will take to produce a result or how
much data you need. The easiest approach is to just come up with an
idea and work on it until you have something. But for those of us
with deadlines and expectations, that approach doesn’t fly. Compa‐
nies that issue you regular paychecks usually want insight into your
progress.

This is where being agile matters. An agile data scientist works in
small iterations, pivots based on results, and learns along the way.
Being agile doesn’t guarantee that an idea will succeed, but it does
decrease the amount of time it takes to spot a dead end. Agile data
science lets you deliver results on a regular basis and it keeps stake‐
holders engaged.

The key to agile data science is delivering data products in defined
time boxes—say, two- to three-week sprints. Short delivery cycles
force us to be creative and break our research into small chunks that
can be tested using minimum viable experiments (Figure 6-1). We
deliver something tangible after almost every sprint for our stake‐
holders to review and give us feedback. Our stakeholders get better
visibility into our work, and we learn early on if we are on track.
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Figure 6-1. Business adaptation of the scientific method from Chap‐
ter 2; agile data science means running this process in short, continu‐
ous cycles

This approach might sound obvious, but it isn’t always natural for
the team. We have to get used to working on just enough to meet
stakeholder’s needs and resist the urge to make solutions perfect
before moving on. After we make something work in one sprint, we
make it better in the next only if we can find a really good reason to
do so.

An Example Using the StackOverflow Data
Explorer
Being an agile data scientist sounds good, but it’s not always obvious
how to put the theory into everyday practice. In business, we are
used to thinking about things in terms of tasks, but the agile data
scientist has to be able to convert a task-oriented approach into an
experiment-oriented approach. Here’s a recent example from my
personal experience.

Our CTO is responsible for making sure the company has the next-
generation skills we need to stay competitive—that takes data. We
have to know what skills are hot and how difficult they are to attract
and retain. Our team was given the task of categorizing key skills by
how important they are, and by how rare they are (Figure 6-2).
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Figure 6-2. Our system of categorizing skills based on estimates of the
importance and rarity of each skill

We already developed the ability to categorize key skills as important
or not. By mining years of CIO survey results, social media sites, job
boards, and internal HR records, we could produce a list of the skills
most needed to support any of CSC’s IT priorities. For example, the
following is a list of programming language skills with the highest
utility across all areas of the company:

Language Importance (0-1 scale)
Java 1
SQL 0.4
Python 0.3
C# 0.2
C++ 0.1
Perl 0.1

Note that this is a composite score for all the different technology
domains we considered. The importance of Python, for example,
varies a lot depending on whether or not you are hiring for a data
scientist or a mainframe specialist.

For our top skills, we had the “importance” dimension, but we still
needed the “abundance” dimension. We considered purchasing IT
survey data that could tell us how many IT professionals had a par‐
ticular skill, but we couldn’t find a source with enough breadth and
detail. We considered conducting a survey of our own, but that
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would be expensive and time-consuming. Instead, we decided to
take a step back and perform an agile experiment.

Our goal was to find the relative number of technical professionals
with a certain skill. Perhaps we could estimate that number based on
activity within a technical community. It seemed reasonable to
assume that the more people who have a skill, the more you will see
helpful posts in communities like StackOverflow. For example, if
there are twice as many Java programmers as Python programmers,
you should see about twice as many helpful Java programmer posts
as Python programmer posts. Which led us to a hypothesis:

You can predict the relative number of technical professionals with a
certain IT skill based on the relative number of helpful contributors in
a technical community.

We looked for the fastest, cheapest way to test the hypothesis. We
took a handful of important programming skills and counted the
number of unique contributors with posts rated above a certain
threshold. We ran this query in the StackOverflow Data Explorer:

SELECT
Count(DISTINCT Users.Id),
Tags.TagName as Tag_Name
FROM
Users, Posts, PostTags, Tags
WHERE
Posts.OwnerUserId = Users.Id AND
PostTags.PostId = Posts.Id AND
Tags.Id = PostTags.TagId AND
Posts.Score > 15 AND
Posts.CreationDate BETWEEN '1/1/2012' AND '1/1/2015' AND
Tags.TagName IN ('python', 'r', 'java', 'perl', 'sql', 'c#', 'c
++')
GROUP BY
Tags.TagName

Which gave us these results:

Programming language Unique contributors Scaled value (0-1)
Java 2276 1.00
C# 1868 0.82
C++ 1529 0.67
Python 1380 0.61
SQL 314 0.14
Perl 70 0.03
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We converted the scores according to a linear scale with the top
score mapped to 1 and the lowest score being 0. Considering a skill
to be “plentiful” is a relative thing. We decided to use the skill with
the highest population score as the standard. At first glance, these
results seemed to match our intuition, but we needed a simple,
objective way of cross-validating the results. We considered looking
for a targeted IT professional survey, but decided to perform a sim‐
ple LinkedIn people search instead. We went into LinkedIn, typed a
programming language into the search box and recorded the num‐
ber of people with that skill:

Programming language LinkedIn population (M) Scaled value (0-1)
SQL 5.2 1.00
Java 4.6 0.88
C++ 3 0.58
C# 1.7 0.33
Python 1 0.19
Perl 0.5 0.10

Some of the results of the experiment matched the cross-validation,
but some were way off. The Java and C++ population scores predic‐
ted by the experiment matched pretty closely with the validation.
But the experiment predicted that SQL would be one of the rarest
skills, while the LinkedIn search told us that it is the most plentiful.
This discrepancy makes sense. Foundational skills, like SQL, that
have been around a while will have a lot of practitioners, but are
unlikely to be a hot topic of discussion. By the way, adjusting the
allowable post creation dates made little difference to the relative
outcome.

We couldn’t confirm the hypothesis, but we learned something val‐
uable. Why not just use the number of people that show up in the
LinkedIn search as the measure of our population with the particu‐
lar skill? We have to build the population list by hand, but that kind
of grunt work is the cost of doing business in data science. Combin‐
ing the results of LinkedIn searches with our previous analysis of
skills importance, we can categorize programming language skills
for the company (Figure 6-3).
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Figure 6-3. Categorizing programming languages based on importance
and rarity

Putting the Results into Action
We applied what we learned to the task of finding the most impor‐
tant agile skills on the market. We used the techniques described
above to categorize each agile skill as Specialize, Recruit, Modernize,
or Maintain (Figure 6-4). We considered the results to be a set of
hypotheses about how our company should handle each skill. 

Figure 6-4. A plot of all Agile skills, tools, and practices categorized by
importance and rarity

There were too many skills on the chart itself to show labels for
every skill. Instead, we gave each skill on the chart a numerical ID,
and created an index that mapped the ID to the name of the skill.
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The following table shows IDs and skill names for many of the skills
located in the Recruit category.

Skill Skill ID
scrum_master 2
microsoft team foundation server 4
sprint 5
user-stories 7
tdd 8
extreme-programming 9
kanban 10
unit-testing 13
coaching 14
ruby-on-rails 15

The results gave us a number of insights about the agile skills mar‐
ket. First, the results are consistent with a field that has plenty of
room for growth and opportunity. The staple skills that should sim‐
ply be maintained are relatively sparse, while there are a significant
number of skills that should be targeted for recruiting.

Many of the skills fell into the Specialize category, suggesting oppor‐
tunities to specialize around practices like agile behavior-driven
development, agile backlog grooming, and agile pair program‐
ming. The results also suggest opportunities to modernize existing
practices such as code reviews, design patterns, and continuous inte‐
gration into a more agile style.

The data scientists were able to act as consultants to our internal tal‐
ent development groups. We helped set up experiments and monitor
results. We provided recommendations on training materials and
individual development plans.

Lessons Learned from a Minimum Viable
Experiment
The entire experiment, from hypothesis to conclusion, took just
three hours to complete. Along the way, there were concerns about
which StackOverflow contributors to include, how to define a help‐
ful post, and the allowable sizes of technical communities—the list
of possible pitfalls went on and on. But we were able to slice through
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1 These are real examples, by the way.
2 In the next chapter, I describe the importance of having project partners to help get you

through the rough times.

the noise and stay focused on what mattered by sticking to a basic
hypothesis and a minimum viable experiment.

Using simple tests and minimum viable experiments, we learned
enough to deliver real value to our stakeholders in a very short
amount of time. No one is getting hired or fired based on these
results, but we can now recommend to our stakeholders strategies
for getting the most out of our skills. We can recommend targets for
recruiting and strategies for prioritizing talent development efforts.
Best of all, I think, we can tell our stakeholders how these priorities
should change depending on the technology domain.

Don’t Worry, Be Crappy
I focused mostly on the triumph of agile, but there is a dark side.
Being agile forces faster delivery, creativity, and visible progress. But
where you see the delivery of a minimum viable product, there will
inevitably be others who see crappy work. I can avoid the issue with
weasel statements like

...of course you have to balance the desire for agility with the need
for completeness...

But a disclaimer like that will bring little solace on the days you take
heat for releasing works in progress. Negative reactions can range
from coworkers politely warning you about damage to your reputa‐
tion, to having someone find and berate your boss.1 The criticism
will die down as you iterate (and as you succeed), but until then, the
best defense is the support of project partners.2 The next best option
is to prepare yourself ahead of time. Being prepared means imagin‐
ing negative responses before they happen. It’s not healthy to dwell
on it, but it’s good to spend at least a little time anticipating the
objections to the work. Sometimes you can head off objections by
making small changes. And sometimes it’s best to let things run
their course.

Putting up with the negative aspects of being agile is worth it. Being
agile is about finding simple effective solutions to complex prob‐
lems. As a data scientist, if you can build up the emotional resilience
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it takes to stay agile, you will increase your ability to get to real
accomplishments faster and more consistently. You get to produce
the kinds of simple and open insights that will have a real and posi‐
tive impact on your business.
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CHAPTER 7

How to Survive in Your
Organization

I wanted so badly to write a chapter on how to “manage up” if you
are a data scientist. Data scientists are in the theory business. No
matter how much data is collected or how many algorithms are
written, the work is just numbers on a page and graphs on a screen
until someone with resources takes action. And that someone is
usually your boss. Managing up is the art of convincing your boss
that there is enough value in the research to justify taking an action. 

I’ve resolved to write only about the things that I’ve seen work first‐
hand, and the problem is that I don’t manage up—ever. I’ve looked
into every persuasion technique I could find: ways to win friends
and influence people, raising my emotional intelligence, improving
my ability to tell compelling data stories. But, in my experience, peo‐
ple are just going to do what they’re going to do. I haven’t been able
to find a Jedi mind trick that could consistently change that. But I
have found a handful of factors that are indicators of a healthy, sup‐
portive environment for productive data science research.

You Need a Network
Pyramid-shaped businesses have a definite chain of command and
control (Figure 7-1). Direction flows down from your boss, who acts
as the gatekeeper for passing the value you create up into other parts
of the organization. No matter how good the idea, there will be
many who miss its value and potential. Sooner or later, your boss
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will miss the potential of a significant part of your research. And if,
when that happens, you find yourself working in a pyramid, that’s
the ballgame.

Figure 7-1. The pyramid-shaped organization

Network-shaped businesses are built on informal connections
(Figure 7-2). Teams form, stuff gets done, you move on to the next
thing. In the network, you have the freedom to reach out to different
groups. If your boss doesn’t see value in your research, it’s acceptable
to shop it around to see if someone else does.

Regardless of how solid your research or how well-crafted your data
story, without an active network, your long-term future as a produc‐
tive data scientist in your company is probably pretty grim.
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Figure 7-2. The network-shaped organization

You Need A Patron
I’m convinced that when an organization transforms, it isn’t because
the people change. It’s because new people rise to prominence. Data
science is transformative. The whole goal is to find new, hidden
insights. To survive in an organization, the data scientist needs a
patron capable of connecting you to people interested in organiza‐
tional change.

The patron removes organizational barriers that stop you from
making progress. She’s influential outside the normal circles in
which you run. Hers is the name you drop when, for example, the
security guys are dragging their feet approving your data access
request. The patron is more than a powerful sponsor. She’s a believer
in the cause. She’s willing to act on your behalf without much justifi‐
cation. 

Without at least one patron in the organization, you are unlikely to
secure the resources and support you need to make meaningful pro‐
gress.
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You Need Partners
Most data science projects follow the path of Gartner’s Hype Cycle
(Figure 7-3). Someone important declares the need for a data sci‐
ence project or capability. There’s a flood of excitement and inflated
expectations. The project gets underway, the first results are pro‐
duced, and the organization plummets into disillusionment over the
difference between what was imagined and what was produced.

Figure 7-3. The data science project hype cycle

This is when having project partners comes in handy. Partners are
the coworkers on the team who have bought in to the mission. Your
partners take the work produced so far and help channel it into
incremental gains for the business. They help to reset expectations
with the rest of the group. They help pivot the work and the project
goals in ways that make the two match up.

If you promise the right things, it can be surprisingly easy to get a
shot at leading a high-profile data science project. But to build up
enough steam to make it pass the trough of disillusionment, you
need to have partners willing to help get out and push. When data
scientists experience the frustration of their efforts not making an
impact, it’s usually because they lack partner support.
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Why a Good Data Scientist Is Like a Flight Attendant
One of the hardest parts of being a data scientist is trying to control
the mania at the beginning of a project. Many of these projects start
when a higher-up announces that we have an important business
question and we need data to arrive at an answer. That proclama‐
tion is like yelling “fire” in a crowded movie theater. Anyone with
data starts the frantic dash to collect, format, and distribute it.

I like what the flight attendants do. At the beginning of every flight,
they take you through the plan. They point out the exits and
describe an orderly evacuation. That’s what a good data scientist
will do as well:

“Our initial analysis has produced four hypotheses—two in the
front, two in the rear. If you have data, please follow the lights to
the nearest hypothesis. We will come to a conclusion once all the
evidence have safely exited their silos.”

It’s a Jungle Out There
I started writing this chapter with the goal of addressing a single,
specific organizational problem: influencing your boss. I discovered
an opportunity to do something (I think) far more valuable. Instead
of prescribing remedies for individual political challenges, I
described the basic gear you need in order to survive, and even
thrive, over the long haul. With a network, patrons, and partners,
you have what you need to deal with the unique political challenges
that happen as a result of the experimental nature of data science. As
for the specifics of how and when to use each, I’ll leave that to the
reader.
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CHAPTER 8

The Road Ahead

Data Science Today
Kaggle is a marketplace for hosting data science competitions. Com‐
panies post their questions and data scientists from all over the
world compete to produce the best answers. When a company posts
a challenge, it also posts how much it’s willing to pay to anyone who
can find an acceptable answer. If you take the questions posted to
Kaggle and plot them by value in descending order, the graph looks
like Figure 8-1.

Figure 8-1. The value of questions posted to Kaggle matches a long-tail
distribution
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This is a classic long-tail distribution. Half the value of the Kaggle
market is concentrated in about 6% of the questions, while the other
half is spread out among the remaining 94%. This distribution gets
skewed even more if you consider all the questions with no direct
monetary value—questions that offer incentives like jobs or kudos.

I strongly suspect that the wider data science market has the same
long-tail shape. If I could get every company to declare every ques‐
tion that could be answered using data science, and what they would
offer to have those questions answered, I believe that the concentra‐
tion of value would look very similar to that of the Kaggle market.

Today, the prevailing wisdom for making money in data science is to
go after the head of the market using centralized capabilities. Com‐
panies collect expensive resources (like specialized expertise and
advanced technologies) to go after a small number of high-profile
questions (like how to diagnose an illness or predict the failure of a
machine). It makes me think of the early days of computing where,
if you had the need for computation, you had to find an institution
with enough resources to support a mainframe.

The computing industry changed. The steady progress of Moore’s
law decentralized the market. Computing became cheaper and dif‐
fused outward from specialized institutions to everyday corpora‐
tions to everyday people. I think that data science is poised for a
similar progression.  But instead of Moore’s law, I think the catalyst
for change will be the rise of collaboration among data scientists.

Data Science Tomorrow
I believe that the future of data science is in collaborations like
outside-in innovation and open research. It means putting a hypoth‐
esis out in a public forum, writing openly with collaborators from
other companies and holding open peer reviews. I used to think that
this would all require expensive and exotic social business plat‐
forms, but, so far, it hasn’t.

Take, for example, work I did in business model simulation. Entirely
new industries can form as the result of business model innovations,
but testing out new ideas is still largely a matter of trial and error. I
started looking into faster, more effective ways of finding solid busi‐
ness model innovations. We held an open collaboration between
business strategists and data scientists using only a Google Hangout.
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I spent 8 weeks collaboratively writing a paper in Google Docs. We
held an open peer review of the paper a using a CrowdChat, that
generated 164 comments and reached over 45,000 people
(Figure 8-2).

Figure 8-2. We peer reviewed research in business model simulation as
an open collaboration between business strategists and data scientists

This kind of collaboration is a small part of what is ultimately possi‐
ble. It’s possible to build entire virtual communities adept at extract‐
ing value from data, but it will take time. A community would have
to go well beyond the kinds of data and analytics centers of excel‐
lence in many corporations today. It would have to evolve into a self-
sustaining hub for increasing data literacy, curating and sharing
data, doing research and peer review.

At first, these collaborations would only be capable of tackling prob‐
lems in the skinniest parts of the data science long tail. It would be
limited to solving general problems that don’t require much special‐
ized expertise or data. For example, this was exactly how Chapter 5
was born. It started out as a discussion of occasional productivity
problems we were having on my team. We eventually decided to
hold an open conversation on the matter. In a 30-minute Crowd‐
Chat session, we got 179 posts, 600 views, and reached over 28,000
people (Figure 8-3). I summarized the findings based on the most
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influential comments, then I took the summary and used it as the
basis for Chapter 5.

Figure 8-3. Chapter 5 was born as an open collaboration between data
scientists and software engineers

But eventually, open data science collaborations will mature until
they are trusted enough to take on even our most important busi‐
ness questions. Data science tools will become smarter, cheaper, and
easier to use. Data transfer will become more secure and reliable.
Data owners will become much less paranoid about what they are
willing to share. Open collaboration could be especially beneficial to
companies experiencing difficulties finding qualified staff.

I believe that in the not-so-distant future, the most important ques‐
tions in business will be answered by self-selecting teams of data sci‐
entists and business change agents from different companies. I’m
looking forward to the next wave, when business leaders turn first to
open data science communities when they want to hammer out
plans for the next big thing.
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1 http://blogs.csc.com/author/doing-data-science/
2 https://www.oreilly.com/people/d49ee-jerry-overton
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